Modellierung der Femtosekunden-Spektroskopie nichtadiabatischer Moleküldynamik mit klassischen periodischen Orbits

  • Seit langem gibt es ein großes Interesse daran, den zeitlichen Ablauf von chemischen Reaktionen zu untersuchen. Ein wichtiges Instrument hierfür ist die Kurzzeitspektroskopie, die in jüngerer Vergangenheit parallel zum rasanten technischen Fortschritt mit immer kürzeren Laserpulsen bis hinein in den Femtosekunden-Bereich einen neuen Boom erlebt hat. Durch die extrem hohe Zeitauflösung ist es heutzutage möglich geworden, die Reaktionsdynamik eines Moleküls quasi in Echtzeit zu verfolgen, weil man durch die Femtosekunden-Pulse die Bewegung der Atomkerne wie mit einer schnellen Kamera beobachten kann. Mit wachsender Anzahl der Experimente gibt es gleichzeitig einen steigenden Bedarf, die Vielzahl der gemessenen und in vielen Aspekten noch unverstandenen Signale auf mikroskopischer Ebene theoretisch zu beschreiben und zu erklären. Besonders interessant dabei ist, dass dies u.a. für komplexe Systeme möglich wird, weil auf den extrem kurzen Zeitskalen auch in sehr großen Molekülen nur einige wenige Freiheitsgrade eine Rolle spielen. Thema dieser Arbeit war die überwiegend klassische Modellierung von nicht-adiabatischer Kurzzeitdynamik in molekularen Quantensystemen, deren Beschreibung über die Born-Oppenheimer-Näherung hinausgeht. Dabei wurden im Rahmen der vorliegenden Arbeit neue Methoden und Rechenverfahren entwickelt, die einerseits eine verbesserte. physikalisch intuitive Anschauung vermitteln und andererseits aufgrund geeigneter Näherungen deutlich Rechenzeit einsparen und dadurch den Zugang zu Modellen größerer Moleküle ermöglichen können. Zunächst wurde die Simulation von zeitaufgelösten Pump-Probe-Spektren mit Hilfe der Franck-Condon-Approximation durchgeführt, bei der die nukleare. Dynamik während des Laserpulses vernachlässigt wird. Diese bekannte Näherung konnte im Rahmen der Arbeit erstmals auf nichtadiabatisch gekoppelte Potentialflächen angewandt werden. Anschließend wurde für das interessierende Quantensystem mit Hilfe des Mapping-Formalismus ein klassisches Analogon eingeführt und dessen Dynamik eingehend studiert. Dies ist deshalb bemerkenswert, weil dadurch erstmals eine Anwendung von klassischen Methoden aus dem Bereich der nichtlinearen Dvnamik auf nichtadiabatische Quantensvsteme möglich wurde. Schließlich konnten klassische periodische Bahnen des Systems identifiziert werden. Dabei handelte es sich im hier betrachteten Fall nichtadiabatisch gekoppelter Potentiale um eine völlig neue Art von vibronischen periodischen Orbits, die sowohl aus einem nuklearen als auch einem elektronischen Freiheitsgrad bestehen. Dadurch konnte in einem nächsten Schritt mit Hilfe einiger weniger Orbits die Kurzzeitdynamik des Systems modelliert werden. Den Schlusspunkt dieser Untersuchungen bildete die klassische Simulation von zeitaufgelösten Pump-Probe-Spektren. Nachdem diese neue Methode mit periodischen Orbits an einem einfachen, stark idealisierten Modell erfolgreich getestet werden konnte, stellte sich jedoch schnell heraus, dass es in mehrdimensionalen Modellen mit einer Torsionsmode zur Beschreibung von Photoisomerisierungs-Prozessen nicht mehr so leicht möglich ist, solche einfachen periodischen Bahnen zu finden, weil die Zeitskalen von nuklearer und elektronischer Bewegung in diesen Systemen sehr unterschiedlich sind. Es ist deshalb in diesem Fall sinnvoll, das Konzept periodischer Orbits dahingehend zu erweitern, die klassische Dynamik in unterschiedliche allgemeine Bewegungstypen einzuteilen, die dann zur Interpretation von quantenmechanischen Ergebnissen herangezogen werden können. Dies stellt eine neue Möglichkeit dar, die komplizierte Wellenpaketdynamik auf physikalisch intuitive Weise zu veranschaulichen. Zusammenfassend kann man sagen, dass diese Arbeit Beiträge für das Verständnis nichtadiabatischer Quantendynamik liefert: Zum einen werden Fragestellungen von prinzipiellem Interesse diskutiert, wie z.B. der klassische Limes von Quantensystemen insbesondere bei chaotischem Verhalten, zum anderen werden durch die Anwendung von Analyseverfahren der klassischen nichtlinearen Dynamik auf vibronisch gekoppelte Molekülmodelle neue Gebiete erschlossen, die ein verbessertes theoretisches Verständnis experimenteller Ergebnisse im Bereich der Kurzzeitspektroskopie ermöglichen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stefan DiltheyGND
URN:urn:nbn:de:hebis:30-0000001506
Referee:Gerhard StockORCiDGND, Peter KopietzORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/19
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/08/21
Release Date:2003/05/19
GND Keyword:Molekül; Pump-Probe-Technik; Quasiklassisches Modell
Issue:130
HeBIS-PPN:108154238
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht