Untersuchung der Nitridierung V/Al-intermetallischer Phasen

  • Schichten V/Al-Intermetallischer Phasen und Schichten aus V(Al) (Schichtdicken 150- 300 nm) wurden durch Interdiffusion von V/Al- und V5Al8/V-Mehrfachschichten bei 400-800°C im Vakuum bei 3 x 10-8 mbar hergestellt. Des Weiteren wurden V5Al8-Schichten durch Sputtern einer V5Al8-Legierung erzeugt. Die Gesamtstöchiometrie der Schichten lag zwischen Al0,86V0,14 und Al0,19V0,81. Als Substrat dienten einkristalline (012) Saphirwafer. Die V/Al-Intermetallischen Phasen und V(Al) wurden im RTP-System bei 600-1250°C mit NH 3 umgesetzt. Zum Vergleich der Reaktivität wurden die V/Al- und V5Al8/V-Mehrfachschichten auch ohne vorherige Vakuumtemperung in NH3 getempert. Die Proben wurden mittels XRD, SNMS, TEM/EFTEM, ESCA, XRR und AFM untersucht. Die V/Al-Mehrfachschichten besaßen eine starke Welligkeit, die von der starken Al-Schichtdickenschwankung herrührte. Trotz dieser Welligkeit zeigten die V- und Al-Schichten der V/Al-Mehrfachschicht eine ausgeprägte Textur. Die V-Schichten waren (110) und die Al-Schichten (111) texturiert. Die Bildung von (112) texturiertem Al3V erfolgte bereits bei 400°C, die Bildung von (110) texturiertem V 5Al8 und V(Al) bei 700°C. In der Nähe der Oberfläche durchmischten sich die V- und Al-Schichten aufgrund von O- und C-Einlagerung während der Vakuumtemperung nicht vollständig, und man beobachtete die Bildung von V-Oxiden. Je größer der V-Gehalt der Intermetallischen Verbindung bzw. V(Al), desto größer war die Reaktivität gegenüber Sauerstoff. Bei der Nitridierung der durch Interdiffusion gewonnen Intermetallischen Phasen Al3V und V5Al8 beobachtete man die Bildung von (001) texturiertem AlN an der Oberfläche. Durch die Nitridierung verarmte die Intermetallische Phase an Aluminium und es bildeten sich die V-reicheren Intermetallischen Verbindungen. Weitere Nitridierung führte zur Bildung von (001) texturiertem V2N. Bei der Nitridierung von V0,81(Al)0,19 bildete sich zunächst V(Al)(N), das bei weiterer Nitridierung zunächst in V2N und schließlich in VN und AlN überging. Das Reaktionsverhalten der Intermetallischen Phasen und der V(Al)-Phase stimmte weitestgehend mit dem von Yong Du et al. berechneten ternären Al/V/N-Phasendiagramm überein. Bei der Nitridierung von V0,61(Al)0,39 beobachtete man jedoch ebenfalls die Bildung von V2N. Dies widerspricht dem berechneten V/Al/N-Phasendiagramm, nachdem sich bei dieser Zusammensetzung auch AlN bilden sollte. Möglicherweise ist das Zweiphasengebiet V(Al)(N) + V2N breiter. Die Intermetallischen Phasen Al3V und V5Al8 zeigten im Vergleich zu reinem Vanadium eine stark verminderte Reaktivität gegenüber NH3. Dies ist auf die Passivierung der Oberfläche durch die AlN-Bildung zurückzuführen. Die ebenfalls schwächere Reaktivität der V(Al)-Phase lässt sich mit der geringen Löslichkeit an Stickstoff in V(Al) und der sehr wahrscheinlich höheren Aktivierungsenergie für die V2N-Bildung erklären. Die Reaktivität der V/Al-Mehrfachschichten war deutlich größer als die der Intermetallischen Phasen. Hierfür ist mit Sicherheit der höhere Anteil an Korngrenzendiffusion verantwortlich. Zum anderen könnte Vanadium die AlN-Bildung katalysieren. Bei der direkten Nitridierung wurde die oberste V-Schicht zu einer VN-Schicht umgesetzt. Die Nitridierung ist also nahe der Oberfläche schneller als die Interdiffusion der Metalle. In Richtung der Oberfläche beobachtete man eine stark ansteigende Al-Konzentration, wofür die im Vergleich zu VN höhere Freie Enthalpie von AlN verantwortlich ist. Durch das Sputtern einer V5Al8-Legierung konnte das Problem der Oxidbildung bei der Interdiffusion umgangen werden. Eine dünne Aluminiumoxidschicht bildete sich jedoch bereits schon bei der Lagerung an Luft. Die Reaktivität der gesputterten V5Al8-Schichten unterschied sich nicht wesentlich von der interdiffundierter V/Al-Mehrfachschichten vergleichbarer Stöchiometrie. Tiefenprofilanalysen an nitridierten V5Al8-Schichten machten deutlich, dass zwischen 600 und 900°C eine bemerkenswerte Menge an Sauerstoff in die AlN-Schicht eingebaut wurde. Ab 900°C stieg die Dicke der Aluminiumoxinitridschicht stark an. Eine weitere Temperaturerhöhung auf 1250°C führte zu keiner sign ifikanten Zunahme der AlN-Schichtdicke, jedoch zu einer starken Reduktion des O-Gehalts im AlN. Gleichzeitig beobachtete man bei 1250°C eine partielle Ablösung der AlN-Schicht.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hartmut Berthold Lewalter
URN:urn:nbn:de:hebis:30-0000004652
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/11/11
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/08/19
Release Date:2004/11/11
Tag:Aluminium; Intermetallische Phasen; Saphir; Schichten; Vanadium
HeBIS-PPN:124694322
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht