Funktionsanalyse von Hitzestressproteinen aus Lycopersicon esculentum

Die Hitzestressantwort stellt einen universellen Schutzmechanismus aller lebenden Organismen dar. Infolge einer Temperaturerhöhung werden Hitzestresstranskriptionsfaktoren (Hsf) aktiviert und bewirken eine gesteigerte Ex
Die Hitzestressantwort stellt einen universellen Schutzmechanismus aller lebenden Organismen dar. Infolge einer Temperaturerhöhung werden Hitzestresstranskriptionsfaktoren (Hsf) aktiviert und bewirken eine gesteigerte Expression von Hitzestressproteinen (Hsp). Als molekulare Chaperone schützen diese die Zelle vor durch Hitze verursachten Schäden. In höheren Pflanzen ist dieses Phänomen sowohl auf der Ebene der Hsf als auch der Hsp besonders komplex. Das Ziel der vorliegenden Arbeit war die Untersuchung der Funktion von Komponenten des Chaperonsystems in der pflanzlichen Thermotoleranz. Zur Untersuchung der Thermotoleranz wurde ein transientes Expressionsystem mit Mesophyllprotoplasten aus steril angezogenen Tomatenpflanzen (Lycopersicon esculentum) zweier Linien (WT und CS) verwendet. CS-Pflanzen zeigen Cosuppression von HsfA1 und zeichnen sich durch eine Integration zweier direkt aufeinander folgender Transgenkassetten in invertierter Orientierung aus. Die fehlende Expression von HsfA1 in CS-Pflanzen ist die Folge eines Prozesses, der als RNA-interference (RNAi) bezeichnet wird. In unserem transienten Expressionssystem wurden Mesophyllprotoplasten mit einem Expressionsplasmid transformiert, das für Luciferase aus Photinus pyralis als thermosensitivem, leicht nachweisbarem Reporterprotein kodiert. Mit Hilfe dieses Testsystems konnten wir den Schutz der Luciferase gegen eine thermische Denaturierung bei 41°C (30 min) und die nachfolgende Renaturierung für 120 min bei 25°C in Abhängigkeit von endogenen und transient exprimierten Hsp und Hsf beobachten. Mit Hilfe der RNAi-Technologie und unter Verwendung von genspezifischen inverted repeat-Konstrukten konnten wir weiterhin die Bildung einzelner Komponenten des endogenen Chaperonsystems verhindern und damit ihre Funktion untersuchen. Es zeigte sich, dass in Protoplasten aus CS-Pflanzen praktisch alle hitzestressinduzierten Proteine fehlten und diese nicht in der Lage waren, Thermotoleranz auszuprägen, wie unter Verwendung des Reporterproteins Luciferase nachgewiesen werden konnte. Weiterhin fand keine Bildung cytoplasmatischer Multichaperonkomplexe, der sogenannten Hitzestressgranula (HSG), statt. Dieser Defekt in der Ausprägung von Thermotoleranz konnte durch Expression von HsfA2, HsfA3 und HsfA4b repariert werden. Die Überexpression dieser Hsf führte gleichermaßen zu (1) einer Expression von Chaperonen, (2) Thermoprotektion des Reporterenzyms Photinus pyralis-Luciferase und (3) Bildung von HSG-Komplexen. In weiteren Analysen lag unser Augenmerk insbesondere auf Vertretern der sHsp, sowie der Hsp70- und Hsp101-Chaperonfamilien. Hierbei erwies sich, dass vor allem Klasse CI-sHsp und Vertreter der Hsp70-Famile beim Schutz der Luciferase gegen Denaturierung während eines Hitzstresses eine Rolle spielen, während hauptsächlich Hsp101 und Vertreter der Hsp70-Familie in der darauf folgenden Erholungsphase von Bedeutung sind. Die Untersuchung der Interaktionen von drei Klassen cytoplasmatischer sHsp und ihrer intrazellulären Verteilung im Rahmen meiner Arbeit zeigte, dass jeder dieser Klassen eine unterschiedliche Funktion im Netzwerk cytoplasmatischer sHsp zukommt. Unter Verwendung nativer Gelelektrophorese und indirekter Immunfluoreszenz konnte nachgewiesen werden, dass sHsp der Klassen CI, CII und CIII in der Lage sind, auf der Ebene oligomerer Komplexe zu interagieren und ihre intrazelluläre Lokalisation wechselseitig zu beeinflussen. Proteine der Klasse CII zeigten eine starke Tendenz zur Bildung von Aggregaten, in die Klasse CIII-sHsp rekrutiert wurden. Im Unterschied dazu verfügten Klasse CI-Proteine über die Fähigkeit, diese Aggregate aufzulösen. Die detaillierte Untersuchung von fünf Isoformen der Klasse CI und zwei Isoformen der Klasse CII aus Lycopersicon esculentum ergab, dass diese oligomere Komplexe einer unterschiedlichen Anzahl von Untereinheiten bilden. Nach Coexpression waren Proteine beider Klassen in heterooligomeren Komplexe zu finden. Allerdings deuteten sich bei der Analyse der Fähigkeit einzelner Isoformen der Klasse CI, Heterooligomere mit Klasse CII-Proteinen zu bilden, Unterschiede an. sHsp kommt weiterhin eine Funktion in der Kontrolle der Aktivität von HsfA2 zu. Im Rahmen dieser Arbeit konnte ich zeigen, dass sHsps der Klassen CI und CII völlig unterschiedliche Rollen in der Regulation der intrazellulären Verteilung von HsfA2 spielen. Nach Überexpression in Mesophyllprotoplasten bildete LpHsp17.4-CII, nicht aber das nahe verwandte LpHsp17.3-CII mit HsfA2 große, cytoplasmatische Aggregate. Hsp17-CI dagegen verhinderte die Coaggregation von Hsp17.4-CII mit HsfA2.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Joanna Tripp
URN:urn:nbn:de:hebis:30-23509
Referee:Lutz Nover
Advisor:Lutz Nover, Klaus-Dieter Scharf
Document Type:Doctoral Thesis
Language:German
Year of Completion:2005
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/06/08
Release Date:2005/12/21
SWD-Keyword:Hitzeschock-Proteine; Tomate
Pagenumber:108
HeBIS PPN:134868595
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $