Elektrophysiologische Untersuchungen zur pH-Abhängigkeit stationärer und transienter Pumpenströme der Na+/K+-ATPase

  • Das in der Plasmamembran tierischer Zellen vorkommende Enzym "Na+/K+-ATPase" setzt katalytisch ATP in ADP um. Als transmembranes Protein vollführt es während der Katalyse einen elektrogenen Zyklus von Konformationsänderungen, wobei 3 intrazelluläre Na+ gegen 2 extrazelluläre K+ ausgetauscht werden, und besitzt damit die Funktion eines primär aktiven Ionentransporters. Bisherige Aktivitätsmessungen, z.B. von B. Vilsen (Vilsen, 1994), an dem in Lösung befindlichen Enzym ergaben deutliche pH-Abhängigkeiten der Aktivität, die auf eine intrazelluläre Wechselwirkung des Protons mit der ATPase zurückgeführt wurden. Im Rahmen der hier vorliegenden Arbeit war nun die Frage zu klären, inwieweit der extrazelluläre pH-Wert auf die Transportfunktion der in der Membran liegenden Na+/K+-ATPase einen Einfluß ausübt. Es wurden daher elektrophysiologische Messungen mit dem Two-Elektrode-Voltage-Clamp-Verfahren und dem Giant-Patch-Clamp-Verfahren an der Zellmembran von Oozyten des Xenopus laevis durchgeführt und die pH-Abhängigkeit von durch die Na+/K+-ATPase verursachten transmembranen stationären als auch transienten Ionenströmen analysiert. Die stationären (steady-state) Ströme sind ein Maß für die Pumpaktivität, während die transienten auf Partialreaktionen des Enzyms schließen lassen. Die elektrophysiologischen Messungen wurden an der ouabainsensitiven und der ouabainresistenten Na+/K+-ATPase des Torpedo californica durchgeführt. Als Expressionssystem diente die Oozyte des Xenopus laevis. Die Messungen wurden mit Hilfe des Two-Elektrode-Voltage-Clamp-Verfahrens sowie des Giant-Patch-Clamp-Verfahrens durchgeführt. Um eine pH-Abhängigkeit zu untersuchen, wurden steady-state- als auch transiente Ströme bei den pH-Werten pH6, pH7,5 und pH9 gemessen. Als Pumenströme wurden die K+-aktivierbaren oder Ouabain-inhibierbaren Stromkomponenten betrachtet. Zunächst wurde die pH-Abhängigkeit von Pumpenströmen der im normalen Modus arbeitenden, ouabainsensitiven Na+/K+-ATPase untersucht. Die Pumpenströme wurden durch [K+]a=5mM aktiviert und durch [K+]a=0mM inhibiert. Die Messungen in einem natriumfreien extrazellulären Medium ergaben eine ausgeprägte pH-Abhängigkeit der Strom-Spannungskennlinien der Pumpenströme. Dieser Effekt wurde zum großen Teil auf einen, bei J.Rettinger (Rettinger, 1996) beschriebenen, Protonen-Einwärtsstrom zurückgeführt. Durch eine Korrektur konnten die vom Protoneneinwärtsstrom unbeeinflußten Pumpenströme analysiert werden, und es zeigte sich Potentialunabhängigkeit der Strom-Spannungskennlinien bei pH6 und pH9, während bei pH7,5 Potentialabhängigkeit (positive Steigung im negativen Potentialbereich) zu erkennen war. Dies wurde auf eine protonierbare im "access-channel" angenommene Stelle zurückgeführt, welche dann einen Einfluß auf die Affinität der Kationenbindung ausüben könnte. In hochnatriumhaltigem extrazellulären Medium (100mM) war dieser pH abhängige Effekt nicht nachweisbar, die Strom-Spannungskennlinien folgten dem schon bekannten Verlauf (Rakowski et al., 1997) mit einer positiven Steigung im negativen Potentialbereich. Weiterhin wurden transiente Ströme des Na/Na-Austausches sowohl an der ouabainsensitiven (OS) als auch an der ouabainresistenen (OR) Na+/K+-ATPase untersucht. Hierfür wurde in hochnatriumhaltigem (100mM) und kaliumfreiem extrazellulären Medium gemessen. Der Na/Na-Austausch der OS Pumpe wurde extrazellulär mit 100:M Ouabain inhibiert, während der der OR Pumpe mit 10mM Ouabain inhibiert wurde. Messungen mit dem Two-Elektrode-Voltag-Clamp-Verfahren ergaben auf Grund der zu geringen Zeitauflösung keine analysierbare pH-Abhängigkeit. Für die bei diesen Messungen festgestellte Ladungsverschiebung konnte eine effektive Wertigkeit von zq=0,80±0,02 ermittelt werden, was mit den Angaben von J. Rettinger et. al. (Rettinger et al., 1994) vergleichbar ist. Die Messungen mit dem Giant-Patch-Clamp-Verfahren an der OR und OS Pumpe ergaben für transiente Ströme einen relaxierenden Strom-Zeitverlauf, der einer Linearkombination aus drei unterschiedlich schnell relaxierenden Exponentialfunktionen mit verschiedenen Amplituden entspricht. Die Zeitkonstanten ließen keine signifikante pHAbhängigkeit erkennen. Ihre Werte lagen in den Bereichen 10-10 :s, 1-5ms und 10-200ms, wobei die am schnellsten relaxierende Funktion nicht analysiert werden konnten. Die langsam relaxierende Exponentialfunktion ließ sich der Konformationsänderung zuordnen, die mittelschnell relaxierende der extrazellulären Wechselwirkung mit den Na+-Ionen. Die Amplituden hingegen zeigten eine pH-Abhängigkeit. Im depolaren Potentialbereich hatten die Amplituden der mittelschnell relaxierenden Funktion bei pH6 eine größere Potentialabhängigkeit als bei pH9. Die Amplituden der langsam relaxierenden Funktion hatten im hyperpolaren Potentialbereich bei pH6 eine geringere Potentialabhängigkeit als bei höheren pH-Werten. Im ersten Fall könnte eine Protonierung an einer Stelle der ATPase die Potentialabhänigkeit über eine Veränderung des "accesschannels" verstärken, im zweiten Fall könnte diese in die Konformationsänderung eingebunden sein.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Petrus Stephan Salonikidis
URN:urn:nbn:de:hebis:30-20940
Referee:D. Schubert
Advisor:Wolfgang Schwarz
Document Type:diplomthesis
Language:German
Year of Completion:1998
Year of first Publication:1998
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/11/11
HeBIS-PPN:184943434
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht