Untersuchungen zu mikrowellenfokussierenden Beschleunigerstrukturen für zukünftige lineare Collider

Zur Erforschung immer kleinerer Strukturen der Materie benötigt die Elementarteilchenphysik Teilchenstrahlen höchster Energie. Gegenwärtig sind das Higgs-Boson und das Top-Quarks‘ die Objekte des größten physikalischen I
Zur Erforschung immer kleinerer Strukturen der Materie benötigt die Elementarteilchenphysik Teilchenstrahlen höchster Energie. Gegenwärtig sind das Higgs-Boson und das Top-Quarks‘ die Objekte des größten physikalischen Interesses. Das sog. “Top” ist das sechste und bisher noch nicht nachgewiesene Mitglied der Quark-Familie. Seine Masse wird unterhalb von etwa 180GeV vermutet. Das Higgs-Boson spielt im sog. Standardmodell der Elementarteilchen eine wichtige Rolle. Seine Masse wird ebenfalls im Bereich zwischen 100 und 200GeV vermutet. Es gibt eine gute Chance, das Top am Protonen- Antiprotonen-Beschleuniger TEVATRON des Fermilab in Chicago nachzuweisen. Seine physikalischen Eigenschaften lassen sich aber erst an zukünfligen Beschleunigem mit höherer Energie bestimmen. Gegenwärtig werden daher mehrere verschiedene Beschleunigerkonzepte erwogen oder sind bereits in Planung bzw. im Bau. Das Spektrum reicht dabei von Protonen-Antiprotonen- bis zu Elektronen-Positronen-Maschinen. Ein vielversprechender Ansatz zur Erzeugung der benötigten Teilchenenergien ist der lineare Elektronen-Positronen-Collider, im folgenden immer als linearer Collider bezeichnet. Das Verhältnis von Meßsignal zu Hintergrund ist bei e+-e-Kollisionen besser als bei Protonen-Kollisionen. Es entstehen keine Partonen, wodurch die zur Verfugung stehende Energie effektiver genutzt werden kann [ 11. Weiterhin ist der lineare Collider im Vergleich zu einer zirkularen Maschine gleicher Endenergie und Luminosität auf lange Sicht kostengünstiger, da keine zusätzliche Hf-Leistung zur Kompensation von Synchrotronstrahlungsverlusten nötig ist. Die für die Experimente erforderliche hohe Luminosität bedingt Teilchenstrahlen von niedrigster Emittanz und geringster Energieverschmierung sowohl innerhalb eines einzelnen Teilchenpaketes als auch zwischen den Bunchen selbst [2]. Zur Erhaltung der Strahlqualität über die volle Lange des Beschleunigers ist es deshalb notwendig, ein akkurates Strahlführungssystem zu entwickeln, das es gestattet, auftretenden Strahlinstabilitäten wirksam zu begegnen. Grund der Instabilitäten sind elektromagnetische Felder, sogenannte Wake- oder Kielwellenfelder, die die Teilchen bei der Durchquerung des Beschleunigers selbst anfachen. Die Teilchenpakete werden dadurch radial von der Achse abgelenkt, sie werden verformt und erfahren eine Impulsverschmierung. Transversale Einzelbunch-Instabilitäten (SBBU, Single Bunch Beam Breakup) kann man durch die Einführung einer Energieverschmierung innerhalb eines Teilchenpakets bekämpfen; in Verbindung mit einer äußeren Strahlführung erreicht man eine Bedämpfung der Instabilität [3]. Als Alternative oder Ergänzung zu äußeren Fokussierungsmaßnahmen erscheint es deshalb interessant, inwieweit man durch geeignete Modifikationen an den Beschleunigerstrukturen die Hochfrequenzfelder selbst zur Erzeugung der benötigten Fokussierung heranziehen kann. Da es sehr schwierig ist, die für das Experiment geforderte Luminosität mit einem einzelnen Bunch zu erzeugen, muß man mehrere Teilchenpakete in kurzem Abstand durch den Beschleuniger schicken. Jetzt erfährt aber jeder Bunch die aufsummierten Wakefelder der ihm vorausfliegenden Teilchenpakete. Um zu verhindern, daß die transversale Strahlablage inakzeptabel groß wird, müssen Maßnahmen zur Kontrolle dieser Vielteilchen-Instabilitäten (MBBU, Multibunch Beam Breakup) getroffen werden. Das bedeutet, die Güten dieser als Long-Range-Wakes bezeichneten Störmoden müssen, je nach Collider, durch konstruktive Maßnahmen auf Werte in der Größenordnung von zehn abgesenkt werden. Die vorliegende Arbeit befaßt sich mit theoretischen Anwendungsmöglichkeiten von hochfrequenzfokussierenden Beschleunigerstrukturen in linearen Collidem bei Einzel- und Multibunch-Betrieb. In Kap. 2 wird eine kurze Einführung in die Problematik von Höchstenergiebeschleunigem gegeben. Anschließend werden in Kap. 3 Irisstrukturen und ihre Kenngrößen behandelt. Kap. 4 gibt eine Einführung in das Wakefeld-Konzept. Es wird untersucht, welche Resonatormoden für den Strahl gefährlich sind; die Wakepotentiale werden mit Resonatorkenngrößen in Verbindung gebracht. In Kap. 5 schließt sich eine Betrachtung zum SBBU an. Es wird untersucht, inwieweit Irisstrukturen und Rechteckblendenstrukturen (MWQ-Strukturen) zur direkten Hochfrequenzfokussierung eingesetzt werden können. Die Eigenschaften einer MWQ-Struktur werden vermessen und mit theoretischen Vorhersagen verglichen. Beispiele fiir hypothetische Collider in verschiedenen Frequenzbereichen werden diskutiert. Im anschließenden Kap. 6 wird der Mechanismus des MBBU erläutert und Möglichkeiten zur Bedämpfung insbesondere von MWQ-Strukturen im Multibunch-Betrieb untersucht. Meßergebnisse an Modellstrukturen werden vorgestellt und am Beispiel von einem S- und X-Band- Collider diskutiert.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Martin Kurz
URN:urn:nbn:de:hebis:30-19212
URL:http://sunkist.physik.uni-frankfurt.de/Diss_MK/Welcome.html
Referee:H. Klein
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2005/10/17
Year of first Publication:1993
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:1993/12/13
Release Date:2005/10/17
SWD-Keyword:Linearer Collider ; Teilchenstrahl ; Fokussierung ; Mikrowelle
HeBIS PPN:133522725
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $