Lambda- und Antilambda-Produktion in zentralen Blei-Blei-Kollisionen bei 40, 80 und 158 GeV pro Nukleon

Zielsetzung der ultrarelativistischen Schwerionenphysik ist es, hoch verdichtete und stark erhitzte Kernmaterie (gemeint ist hierbei nicht nur die Materie der Atomkerne, sondern allgemein stark wechselwirkende Materie) i
Zielsetzung der ultrarelativistischen Schwerionenphysik ist es, hoch verdichtete und stark erhitzte Kernmaterie (gemeint ist hierbei nicht nur die Materie der Atomkerne, sondern allgemein stark wechselwirkende Materie) im Labor zu erzeugen und deren Eigenschaften zu untersuchen. Gitter-QCD Rechnungen sagen bei einer kritischen Energiedichte von 1-2 GeV/fm3 einen Übergang der hadronischen Materie in eine partonische Phase, dem Quark-Gluon-Plasma, voraus. Neben anderen Observablen wurde die Seltsamkeitsproduktion als mögliche Signatur für den Materiezustand quasifreier Quarks und Gluonen vorgeschlagen. Im Vergleich zu elementaren Nukleon-Nukleon-Reaktionen beobachtet man in Schwerionenkollisionen generell eine Überhöhung der Seltsamkeitsproduktion. Inwieweit dieser Unterschied bei allen Schwerpunktenergie auf rein hadronische Phänomene zurückgeführt werden kann, oder ob partonische Gleichgewichtseffekte eine wesentliche Rolle spielen, ist derzeit eines der wichtigen Themen der Schwerionenphysik. Antworten auf diese Fragen erhofft man sich aus der Untersuchung der Energieabhängigkeit der Erzeugung seltsamer Hadronen. Die NA49 Kollaboration hat deshalb am CERN-SPS ein Energie-Scan Programm aufgelegt, in dem zentrale Blei-Blei-Kollisionen bei 40, 80 und 158 A·GeV untersucht wurden. In dieser Arbeit wird die Produktion von Lambda und Antilambda Hyperonen bei den drei verschiedenen Strahlenergien untersucht. Lambda Hyperonen, die 30-60% der produzierten s-Quarks enthalten, erlauben neben der Seltsamkeitsproduktion gleichzeitig auch den durch die kollidierenden Kerne erzeugten Effekt der Baryonendichte zu studieren. Das NA49 Experiment führt präzise Messungen des hadronischen Endzustands über einen weiten Akzeptanzbereich durch. Die geladenen Sekundärteilchen werden in vier hochauflösenden Spurdriftkammern gemessen. Neutrale seltsame Teilchen (Lambda, Antilambda und K0s) werden anhand ihrer Zerfallstopologie identifiziert. Die untersuchten Lambda Hyperonen werden über drei Rapiditätseinheiten um den Bereich zentraler Rapidität und mit Transversalimpulsen von 0,4 und 2,5 GeV/c gemessen. Die Temperaturparameter der Lambda und Antilambda Transversalimpulsverteilungen bei zentraler Rapidität sind für die drei Energien im Rahmen der Fehler gleich. Als Funktion der Schwerpunktenergie beobachtet man einen Anstieg des Lambda-Temperaturparameters, was durch eine Erhöhung des kollektiven transversalen Flusses erklärt werden kann. Erste Ergebnisse zur Proton-Produktion zeigen einen ähnlichen Trend. Die Rapiditätsverteilungen der Lambda sind breiter als die der Antilambda-Hyperonen. Die Lambda Rapiditätsverteilung verbreitert sich mit ansteigender Schwerpunktenergie von einer bei zentraler Rapidität konzentrierten Verteilung bei 40 A·GeV zu einem flachen Verlauf bei 158 A·GeV. Die Lambdas enthalten Beiträge der extrem kurzlebigen Sigma 0, die elektromagnetisch in ein Lambda und ein Photon zerfallen. Die in der Analyse selektierten Lambda und Antilambda sind aufgrund der gewählten Qualitätskriterien nahezu frei von Beiträgen mehrfachseltsamer Baryonen. Der systematische Fehler der Spektren konnte zu 9% abgeschätzt werden. Die Korrekturen und die Analyseprozedur wurden durch die Extraktion des K0s Mesons bei 158 A·GeV und den Vergleich dieser Ergebnisse mit denen der geladenen Kaonen überprüft. Man stellt eine gute Übereinstimmung fest. Zusammen mit Ergebnissen bei niedrigeren Energien läßt sich die Anregungsfunktion der Lambda und AntiLambda Hyperonen studieren. Während die Lambda Multiplizität bei mittlerer Rapidität nach dem Anstieg bei niedrigen Energien im SPS-Energiebereich leicht abfällt bzw. die totale Multiplizität saturiert, beobachtet man für die AntiLambda einen stetigen Anstieg als Funktion der Schwerpunktenergie. Das <Lambda>/<Pi>-Verhältnis in Kern-Kern-Kollisionen zeigt einen steilen Anstieg im AGS-Energiebereich mit anschließendem Maximum und einem Abfall bei SPS-Energien. Dagegen beobachtet man in Nukleon-Nukleon-Reaktionen eine Saturation dieses Verhältnisses bei etwa der höchsten AGS-Energie. Die Normierung auf die Pionen dient dem Vergleich der Produktionsraten in Kern-Kern-Stößen mit denen der elementaren Systeme und ist unabhängig von der Anzahl der beteiligten Nukleonen. Das Maximum des Lambda/Pi Verhältnisses liegt zwischen 10 und 40 A·GeV, wie es von statistischen Modellen vorhergesagt wird. Die Energieabhängigkeit des Lambda/Pi-Verhältnisses läßt sich dementsprechend gut mit dem Statistischen Modell von Cleymans, Redlich et al. beschreiben. Der generelle Trend des Lambda/Pi Verhältnisses wird von den mikroskopischen Modellen (UrQMD, HSD, RQMD) richtig wiedergegeben, wobei jedoch die Datenpunkte (besonders für 40 A·GeV) unterschätzt werden. Die Vorhersagen des UrQMD- und HSD-Modells für die Lambda Rapiditätsverteilung zeigen sehr gute Übereinstimmung mit den Daten. Die Diskrepanz im Lambda/Pi Verhältnis ist somit auf die überschätzte Pion-Produktion zurückzuführen. Die AntiLambda Produktion wird von dem UrQMD- und RQMD-Modell um mehr als einen Faktor zwei unterschätzt. Die Lambda und Antilambda Produktionsraten für alle drei Energien und die totale K0s Multiplizität bei 158 A·GeV fügen sich in einer statistischen Modellanalyse von Becattini in die Systematik der anderen Teilchen ein. Der Seltsamkeits-Saturationsfaktor gamma s zeigt keine große Änderung als Funktion der Energie. Das AntiLambda/Lambda Verhältnis bei mittlerer Rapidität, das den Paarproduktionsprozess widerspiegelt, steigt rapide von AGS- bis RHIC-Energien an. Der gleiche Trend ist für das ¯p/p Verhältnis beobachtbar. Das AntiLambda/¯p Verhältnis erlaubt das Zusammenspiel der Produktions und Annihilationsprozesse zu studieren. Im SPS-Energiebereich steigt dieses Verhältnis mit abnehmender Schwerpunktenergie leicht an. Die Ergebnisse der vorliegenden Arbeit wurden auf der Strange-Quark-Matter Konferenz 2001 [1] und der Quark-Matter Konferenz 2002 [2] vorgestellt und diskutiert.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:André Mischke
URN:urn:nbn:de:hebis:30-13766
URL:http://www.ikf.physik.uni-frankfurt.de/IKF-HTML/highenergy/thesis.html
Referee:Herbert Ströbele
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2005/08/11
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/12/03
Release Date:2005/08/11
SWD-Keyword:Bleitarget ; Blei-Reaktion ; Lambda-Hyperon
HeBIS PPN:130211567
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $