Über Schnorr's Preprocessing für diskrete Log-Unterschriften

Ziel dieser Arbeit war es, ein sicheres und trotzdem effizientes Preprocessing zu finden. Nach den zurückliegenden Untersuchungen können wir annehmen, dies erreicht zu haben. Wir haben gezeigt, daß eine minimale Workload
Ziel dieser Arbeit war es, ein sicheres und trotzdem effizientes Preprocessing zu finden. Nach den zurückliegenden Untersuchungen können wir annehmen, dies erreicht zu haben. Wir haben gezeigt, daß eine minimale Workload von Attacken von 272 mit nur 16 Multiplikationen pro Runde und 13 gespeicherten Paaren (ri, xi) erreicht werden kann. Mit der in Abschnitt 12.3 erklärten Variation - der Wert rº k geht nicht in die Gleichungen mit ein - erreichen wir sogar eine Sicherheit von 274. In diesem Fall können wir die Anzahl der gespeicherten Paare auf 12 verringern. Auch von der in Abschnit 12.5 besprochenen Variation erwarten wir eine Erhöhung der Sicherheit. Ergebnisse dazu werden bald vorliegen. Folgender Preprocessing Algorithmus erscheint z.B. nach unserem derzeitigen Wissensstand geeignet: Setze k = 12, l0 = 7, l1 = 3, d0 = 4, d1 = 5, h = 4, ¯h = 1. Initiation: lade k Paare (r0 0, x00 ) . . . , (r0 k 1, x0 k 1) mit x0i = ®r0 i mod p. º := 1. º ist die Rundennummer 1. Wähle l1 2 verschiedene Zufallszahlen a(3, º), . . . , a(l1, º) 2 {º + 1 mod k, . . . , º 2 mod k} a(1, º) := º mod k, a(2, º) := º 1 mod k W¨ahle l1 2 verschiedene Zufallszahlen f(3, º), . . . , f(l1, º) 2 {0, . . . , d1 1}, f(1, º) zuf¨allig aus {h, . . . , d1 1} und f(2, º) zuf¨allig aus {¯h, . . . , d1 1} rº k := rº ºmodk + l1 Xi=1 2f(i,º)rº 1 a(i,º) mod q xk = xºº modk · l1 Yi=1 (xº 1 a(i,º))2f(i,º) mod p 2. w¨ahle l0 1 verschiedene Zufallszahlen b(2, º), . . . , b(l0, º) 2 {º + 1 mod k, . . . , º 1 mod k} b(1, º) := º mod k W¨ahle l0 verschiedene Zufallszahlen g(1, º), . . . , g(l0, º) 2 {0, . . . , d0 1} rº ºmodk := l0 Xi=1 2g(i,º)rº 1 b(i,º) mod q xºº modk = l0 Yi=1 (xº 1 b(i,º))2g(i,º) mod p 3. verwende (rº k, xº k) f¨ur die º te Signatur (eº, yº) gem¨aß yº = rº k + seº mod q 4. º := º + 1 GOTO 1. f¨ur die n¨achste Signatur Die Zufallszahlen a(3, º), . . . , a(l, º), b(2, º), . . . , b(l, º), f(1, º), . . . , f(l, º) und g(1, º), . . . , g(l, º) werden unabhängig gewählt. Dies ist selbstverständlich nur ein Beispiel. Unsere Untersuchungen sind noch nicht abgeschlossen. Wir glauben aber nicht, daß feste Werte a(i, º) und b(i, º) ein effizientes Preprocessing definieren. Wir haben einige Variationen mit solchen weniger randomisierten Gleichungen studiert und immer effiziente Attacken gefunden.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Johannes Merkle
URN:urn:nbn:de:hebis:30-12223
URL:http://www.mi.informatik.uni-frankfurt.de/people/merkle/merkle.html
Document Type:Diplom Thesis
Language:German
Date of Publication (online):2005/07/11
Year of first Publication:1995
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/07/11
HeBIS PPN:18491406X
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $