How many quasiplatonic surfaces?

We show that the number of isomorphism classes of quasiplatonic Riemann surfaces of genus <= g has o growth of typ g exp (log g). The number of non-isomorphic regular dessins of genus <= g has the same growth type.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Jan-Christoph Schlage-Puchta, Jürgen Wolfart
URN:urn:nbn:de:hebis:30-11860
Document Type:Preprint
Language:English
Date of Publication (online):2005/06/29
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/06/29
Tag:Dessins d'enfants ; compact Riemann surfaces ; subgroup growth
Source:http://www.math.uni-frankfurt.de/~wolfart/wolfart.html, Preprint, Frankfurt a.M. 2004, erscheint im Archiv d. Math.
HeBIS PPN:129536733
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
MSC-Classification:14H30 Coverings, fundamental group [See also 14E20, 14F35]
20E07 Subgroup theorems; subgroup growth
30F10 Compact Riemann surfaces and uniformization [See also 14H15, 32G15]
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $