Berechnung von Einzugsbereichen mit Hilfe von Einschrittverfahren höherer Ordnung

Diese Arbeit beschäaftigt sich mit den Eigenschaften dynamischer Systeme, die in Form von autonomen Differentialgleichungen vorliegen. Genauer: Das Langzeitverhalten dieser dynamischen Systeme soll untersucht werden. Es 
Diese Arbeit beschäaftigt sich mit den Eigenschaften dynamischer Systeme, die in Form von autonomen Differentialgleichungen vorliegen. Genauer: Das Langzeitverhalten dieser dynamischen Systeme soll untersucht werden. Es läßtt sich beschreiben durch für das jeweilige System charakteristische Mengen, die attrahierenden Mengen und deren Einzugsbereiche. Attrahierende Mengen sind bezüglich eines dynamischen Systems invariante Mengen, die Trajektorien des dynamischen Systems, die in ihrer Umgebung starten, anziehen. Der Einzugsbereich einer attrahierenden Menge ist die Menge aller Punkte, die von der attrahierenden Menge angezogen werden. Betrachtet werden Systeme, die von einer Eingangsfunktion abhängen. Diese Eingangsfunktion kann je nach Zusammenhang eine Störung des dynamischen Systems oder eine Kontrolle desselben darstellen. Werden Störungen betrachtet, so sind Eigenschaften des dynamischen Systems, die für alle Eingangsfunktionen gelten, zu untersuchen. Diese werden in dieser Arbeit als starke Eigenschaften bezeichnet. Werden Kontrollen betrachtet, sind Eigenschaften des dynamischen Systems, die nur für mindestens eine Eingangsfunktion erfüllt sind, zu untersuchen. Sie werden hier als schwache Eigenschaften bezeichnet. Man betrachte beispielsweise einen Punkt, der zu einer invarianten Menge gehört. Zu jeder Eingangsfunktion gibt es eine zugehörige Trajektorie, die an diesem Punkt startet. Starke Invarianz bedeutet, daß keine dieser Trajektorien jemals die invariante Menge verläßt, schwache Invarianz, da mindestens eine dieser Trajektorien niemals die invariante Menge verläßt. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung der schwachen Einzugsbereiche. Sie lassen sich nur in Ausnahmefällen durch theoretische Überlegungen finden. Daher ist es von Nutzen, diese Mengen numerisch zu berechnen. Hier soll deshalb die benötigte Theorie bereitgestellt werden, um schwache Einzugsbereiche mit einem Unterteilungsalgorithmus anzunähern. Ein Unterteilungsalgorithmus dient allgemein dazu, innerhalb einer vorgegebenen Grundmenge eine Menge, die eine bestimmte Eigenschaft hat, zu finden. Die Idee eines solchen Algorithmus ist es einfach, die Grundmenge in "Zellen" zu unterteilen und für jede dieser Zellen zu prüfen, ob sie ganz, gar nicht oder teilweise zur gesuchten Menge gehört. Gehört eine Zelle nur teilweise zur gesuchten Menge, so wird sie weiter unterteilt und für die "Teilzellen" erneut entschieden, ob sie zur gesuchten Menge gehören. Für die Berechnung eines schwachen Einzugsbereiches bedeutet dies, daß für jede Zelle überprüft werden muß, ob es eine Kontrollfunktion gibt, mit deren Hilfe Trajektorien der betrachteten Differentialgleichung, die innerhalb der Zelle starten, in eine gegebene schwach attrahierende Menge (bzw. eine passend gewählte Umgebung dieser Menge) gesteuert werden können.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Christine Schweinem
URN:urn:nbn:de:hebis:30-11645
Document Type:Diplom Thesis
Language:German
Year of Completion:2003
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2003/07/24
Release Date:2005/06/22
Last Page:121
HeBIS PPN:129523240
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $