Aufbau und Untersuchung von zwei Multicusp-Ionenquellen und Injektionssystemen für ein Funnelingexperiment

Diese Arbeit entstand im Zusammenhang mit dem Funneling-Experiment am Institut für Angewandte Physik. Dieses Experiment soll die praktische Umsetzung des für das HIDIF-Projekt benötigte Funneln zur Ionenstrom-Erhöhung de
Diese Arbeit entstand im Zusammenhang mit dem Funneling-Experiment am Institut für Angewandte Physik. Dieses Experiment soll die praktische Umsetzung des für das HIDIF-Projekt benötigte Funneln zur Ionenstrom-Erhöhung demonstrieren. Dabei stand die Erzeugung zweier identischer Ionenstrahlen mit einer Energie von 4 keV im Vordergrund. Diese Ionenstrahlen werden in zwei aufeinander zulaufenden RFQ-Beschleunigern auf eine Energie von 160 keV beschleunigt. Der noch in Planung stehende Funneling-Deflektor bringt die beiden Ionenstrahlen auf eine gemeinsame Strahlachse. Zu Beginn der Diplomarbeit stand der Umbau der Emittanzmeßanlage auf eine PC-Plattform. Gleichzeitig wurde ein sogenannter Quellenturm zum Betrieb der Ionenquellen aufgebaut (vgl. Kapitel 7.2). Die Multicusp-Ionenquellen wurden von K. N. Leung vom Lawrence Berkeley National Laboratory (LBNL) entwickelt und gebaut. Das elektrostatische Linsensystem wurde von R. Keller (LBNL) entworfen und berechnet. Die beiden Linsensysteme wurden in unserer Werkstatt gefertigt. Der erste Teil des Testbetriebs der Injektionssysteme, bestehend aus der Multicusp- Ionenquelle sowie dem elektrostatischen Linsensystem auch LEBT (Low Energy Beam Transport) genannt, bestand aus der Messung des Strahlstromes sowie der zugehörigen Emittanz. Zum Messen des Strahlstromes stand eine durch Preßluft in den Ionenstrahl fahrbare Faradaytasse zur Verfügung. Von dieser Faradaytasse wurde eine Kennlinie zur Bestimmung der Spannung der Sekundärelektronen- unterdrückung aufgenommen (vgl. Kapitel 8.1). Zur Messung der Strahlemittanz wurde eine Emittanzmessung nach dem Schlitz-Gitter Prinzip vorgenommen (vgl. Kapitel 5, Kapitel 7.7-7.9). Beim Betreiben der Injektionssysteme stand vor allem der Synchronbetrieb im Vordergrund. Dabei wurde festgestellt, daß eine der beiden Ionenquellen auch ohne Linsensystem einen größeren Strahlstrom liefert (vgl. Kapitel 8.9). Der Unterschied zwischen den Ionenquellen beträgt bei einem Bogenstrom von 6 A über 20 %. Dies bedeutet für den späteren Strahlbetrieb am RFQ, daß zum Erzeugen gleicher Strahlströme eine Ionenquelle immer mit einem kleineren Bogenstrom betrieben werden muß. Die dadurch unterschiedlichen Plasmadichten sowie thermischen Belastungen der Plasmakammer und unterschiedlichen Füllgrade der elektrostatischen Linsen tragen zu den festgestellten Emittanzunterschieden bei. Zum späteren Vergleich der Injektionssysteme wurde ein Injektionssystem durch verschiedene Bogenströme, variierte Spannungen an den elektrostatischen Linsen sowie unterschiedlichen Gasdrücken in der Plasmakammer ausgemessen. Diese Messungen wurden nach Wechseln der Glühkathode sowie Demontage und Neumontage von Ionenquelle und Linsensystem wiederholt. Dabei wurde festgestellt, daß sich der Strahlstrom bei der Vergleichsmessung kaum, die Emittanz der Injektionssysteme aber bis ca. 10% ändert (vgl. Kapitel 8.5). Diese Unterschiede müssen bei dem späteren Vergleich mit dem zweiten Injektionssystem einbezogen werden.Beim Betrieb des zweiten Injektionssystems wurden im direkten Vergleich der Injektionssysteme Unterschiede zwischen dem Strahlstrom sowie der Emittanz festgestellt. Auch hier lieferte das zweite Injektionssystem den schon nach der Ionenquelle festgestellten größeren Ionenstrom. Die gemessenen normierten 90 % RMS-Emittanzen bei einem Strahlstrom von 1 mA betragen am Injektionssystem 1 , beim Injektionssystem 2 , bei einer e1 =0,0288 mm mrad e2 =0,0216 mm mrad Strahlenergie von 4 keV. Die Emittanzunterschiede betragen bis zu 30 %. Im Betrieb mit dem RFQ können die Linsensysteme nicht mit den identischen Spannungen betrieben werden. Dies ist zum einen auf die fertigungsbedingten Unterschiede zurückzuführen, zum anderen auf die abweichenden Plasmadichten zum Erreichen gleicher Strahlströme. Im geplanten HIDIF-Projekt sollen 48 Ionenquellen drei unterschiedliche Teilchenströme erzeugen. Bei dieser Anzahl an Ionenquellen für drei unterschiedliche Ionensorten wird das Erzeugen identischer Teilchenströme sicher noch schwerer zu bewältigen sein. Am Funneling-Experiment ist der Vergleich der beiden Injektionssysteme abgeschlossen. Der Doppelstrahl RFQ-Beschleuniger ist aufgebaut, es wurde bereits ein Ionenstrahl in den RFQ eingeschossen (vgl. Kapitel 8.13). Die normierten 90 % RMS-Emittanzen nach dem RFQ betragen 0,057 mm mrad sowie 0,0625 mm mrad für die beiden Strahlachsen. Der Emittanzunterschied ist kleiner 9 %. Die Emittanzen nach dem RFQ können nicht direkt mit den im Testbetrieb gemessenen Emittanzen der Injektionssysteme verglichen werden. Im Strahlbetrieb mit dem RFQ wurde eine Strahlenergie der Injektionssysteme von 4,15 keV benötigt. Außerdem mußten durch geänderte Einschußbedingungen in den RFQ die Linsenspannungen gegenüber dem Testbetrieb variiert werden. Mit dem Aufbau des Funneling-Deflektors wird zur Zeit begonnen. Nach der Erprobung wird der Einbau in die Strahlachse erfolgen.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Holger Zimmermann
URN:urn:nbn:de:hebis:30-7337
Document Type:Diplom Thesis
Language:German
Year of Completion:1998
Year of first Publication:1998
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/04/19
HeBIS PPN:12879044X
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $