Stone spectra of von Neumann algebras and foundation of quantum theory

Die in Englisch verfasste Dissertation, die unter der Betreuung von Herrn Prof. Dr. H. F. de Groote, Fachbereich Mathematik, entstand, ist der Mathematischen Physik zuzuordnen. Sie behandelt Stonesche Spektren von Neuman
Die in Englisch verfasste Dissertation, die unter der Betreuung von Herrn Prof. Dr. H. F. de Groote, Fachbereich Mathematik, entstand, ist der Mathematischen Physik zuzuordnen. Sie behandelt Stonesche Spektren von Neumannscher Algebren, observable Funktionen sowie einige Anwendungen in der Physik. Das abschließende Kapitel liefert eine Verallgemeinerung des Kochen-Specker-Theorems. Stonesche Spektren und observable Funktionen wurden von de Groote eingeführt. Das Stonesche Spektrum einer von Neumann-Algebra ist eine Verallgemeinerung des Gelfand-Spektrums, die observablen Funktionen verallgemeinern die Gelfand-Transformierten. Da de Grootes Ergebnisse zum großen Teil unveröffentlicht sind, folgt nach dem Einleitungskapitel im zweiten Kapitel eine Übersichtsdarstellung dieser Ergebnisse. Das dritte Kapitel behandelt die Stoneschen Spektren endlicher von Neumann-Algebren. Für Algebren vom Typ In wird eine vollständige Charakterisierung des Stoneschen Spektrums entwickelt. Zu Typ-II1-Algebren werden einige Resultate vorgestellt. Das vierte Kapitel liefert. einige einfache Anwendungen des Formalismus auf die Physik. Das fünfte Kapitel gibt erstmals einen funktionalanalytischen Beweis des Kochen-Specker-Theorems und liefert die Verallgemeinerung dieses Satzes, wobei die Situation für alle von Neumann-Algebren geklärt wird.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Andreas Döring
URN:urn:nbn:de:hebis:30-0000007020
Referee:H. F. de Groote
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2005/04/14
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/02/09
Release Date:2005/04/14
Tag:Stonesches Spektrum ; Typ-In-Algebra; observable Funktion ; von Neumann-Algebra
HeBIS PPN:127949623
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $