Photoionisation und doppelt angeregte Zustände in Wasserstoff- und Deuterium-Molekülen

In dieser Arbeit wurden ionisierende Prozesse inWasserstoff- und Deuterium-Molekülen untersucht. Das Ziel war es dabei insbesondere, doppelt angeregte Zustände näher zu betrachten, d.h. Prozesse, bei denen mit einem UV-P
In dieser Arbeit wurden ionisierende Prozesse inWasserstoff- und Deuterium-Molekülen untersucht. Das Ziel war es dabei insbesondere, doppelt angeregte Zustände näher zu betrachten, d.h. Prozesse, bei denen mit einem UV-Photon beide Elektronen des H2 angeregt werden. Das Molekül zerfällt dann schließlich in ein angeregtes Atom sowie ein Proton und ein Elektron. Diese Doppelanregung konnte in den Messdaten identifiziert werden. Durch die Art der Messung war es möglich, einen umfassenden Überblick über den Photonenenergiebereich von 29 bis 60 eV zu erhalten (siehe Abb. 4.4). Somit konnte die Dynamik verschiedener Prozesse mit sich ändernder Photonenenergie analysiert werden. Es konnte die Einfach-Ionisation vom Einsetzen bis hin zur Doppel-Ionisation beobachtet werden. Zwischen 29 und 38 eV traten dabei Anregungen auf das Q1- und Q2-Band auf. Insbesondere für einen KER<2 eV konnten interessante Strukturen aufgelöst werden, die bei bisherigen Experimenten nur eindimensional, d.h. ohne die Varianz der Photonenenergie, betrachtet werden konnten. Eine Gegenüberstellung der beiden Isotope H2 und D2 zeigte zahlreiche Unterschiede bei der Autoionisation auf. Für den Bereich des KER, der einer Anregung auf das Q2-Band entspricht, konnten außerdem Winkelverteilungen erstellt werden und mit Verteilungen verglichen werden, die aus der direkten Besetzung des (2p sigma u) Zustands resultieren. Dabei wurde für beide Isotope eine Asymmetrie beobachtet. Für höhere Photonenenergien lagen schließlich die Endzustände zu dicht beieinander, um aufgelöst zu werden. Doppelanregungen auf das Q3- und Q4-Band konnten daher hier nicht explizit beobachtet werden. Für künftige Messungen wäre es sicher interessant, das Q1-Band mit einem speziell darauf abgestimmten Spektrometer im entsprechenden Energiebereich genauer zu studieren. So könnten die energetischen Strukturen dieser niederenergetischen Protonen besser aufgelöst und somit der Kontrast zur Besetzung des 1s sigma g Zustands erhöht werden. Außerdem wäre es von Interesse auch Photonenenergien unterhalb von 29 eV zu betrachten, was jedoch an Beamline 9.3.2 der ALS nicht möglich war. Ebenso wäre natürlich der höhere Photonenfluss einer Undulator-Beamline wünschenswert, um eine bessere Statistik zu erhalten. Hier konnte gezeigt werden, dass im Energiebereich, in welchem Anregungen auf das Q3- und Q4-Band möglich sind, nur Intensitäten in höheren Endzuständen (n >=2) auftreten. Um eventuelle Strukturen in diesem Bereich zu studieren ist ein jedoch ein höher auflösendes Spektrometer notwendig. Dies könnte z.B. durch größere MCP realisiert werden.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Tilo Havermeier
URN:urn:nbn:de:hebis:30-32118
Document Type:Diplom Thesis
Language:German
Year of Completion:2006
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2006/10/09
HeBIS PPN:185784720
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $