Estimation in projective spaces and applications in computer vision

Fast alle Parameterschätzprobleme im Bereich der Mehrbildverarbeitung und des maschinellen Sehens sind Schätzprobleme für homogene Vektoren. Solche Vektoren x 2 Pn (wobei Pn den projektiven Raum bezeichnet) unterscheiden
Fast alle Parameterschätzprobleme im Bereich der Mehrbildverarbeitung und des maschinellen Sehens sind Schätzprobleme für homogene Vektoren. Solche Vektoren x 2 Pn (wobei Pn den projektiven Raum bezeichnet) unterscheiden sich von herkömmlichen Vektoren x 2 Rn dadurch, daß Vorzeichen und Betrag unbestimmt sind. Folglich haben Vektoren x 2 Pn zwar n Komponenten, aber nur n - 1 Freiheitsgrade. Homogene Vektoren erweisen sich für Bildverarbeitung und Computergrafik als besonders geeignet, weil Punkte und Linien, die in Bezug auf Rn im Unendlichen liegen (z.B. Horizont, Fluchtpunkte), im Rahmen der projektiven Geometrie als Vektoren im projektiven Raum dargestellt werden können. So schneiden sich zum Beispiel alle Geraden (auch parallele Geraden!) in einem Punkt x 2 Pn. Kamerakalibrierung, Rekonstruktion der dreidimensionalen Welt aus zwei oder mehr Kamerabildern (z.B. zur Roboternavigation) oder Bestimmung lokaler Orientierung in Bildern (z.B. zur computergestützten Erkennung von Fingerabdrücken) sind Probleme, bei denen ein homogener Vektor aus fehlerbehafteten Meßdaten bestimmt werden, sprich: geschätzt, werden muß. Ein Algorithmus, der aus fehlerfreien (oder nur gering verrauschten) Daten die gesuchten Größen bestimmt, ist dabei nur ein Teil der Lösung solcher Probleme, denn für die Praxis ist dies oft nicht hinreichend: gerade in der Bildverarbeitung hat man es sehr häufig mit Problemstellungen zu tun, die extrem empfindlich auf Störungen reagieren, zum Beispiel indem schon bei geringen Fehlern in den Eingangsdaten systematische Schätzfehler (engl.: bias) in den Ausgangsdaten auftreten können. Die Schätztheorie behandelt die Fragestellung, wie man in statistisch optimaler Weise aus fehlerbehafteten Messungen die gesuchten Parameter bestimmt (sprich: die gerade angesprochenen Probleme vermeidet). Traditionellerweise behandelt die Schätztheorie dabei gesuchte Parametervektoren im reellen Raum Rn. Zu einem gewissen Grade lassen sich herkömmliche Verfahren und Methoden für Punktdaten auch auf Richtungsdaten und axiale Daten (äquivalent zu homogenen Vektoren) übertragen: der unbestimmte Betrag wird beseitigt, indem man auf 1 normiert (d. h. auf die mehrdimensionale Einheitshyperkugel projeziert) und anschießend löst man bei axialen Daten das Problem des undefinierten Vorzeichens, indem man eine Halbkugel als ‘gültig’ definiert und bei allen Vektoren in der ‘falschen’Halbkugel das Vorzeichen herumdreht. Wenn dann noch die Verteilung der Vektoren stark konzentriert ist, dann kann man diese durch eine Tangentialebene nähern – und damit erhält man wieder einen reellen Raum, in dem man das Schätzproblem mit herkömmlichen und etablierten Verfahren lösen kann. Diese Schilderung klingt bewußt etwas schärfer als sich das Problem in vielen Fällen darstellt. Beispielsweise entwickelte Carl Friedrich Gauß seine berühmte Methode der kleinsten Quadrate für eine astronomische Problemstellung, für Messungen und Schätzungen auf der Himmelskugel, d.h. für Richtungen bzw. Vektoren mit unbestimmtem Betrag. In vielen Fällen (wie z.B. diesem) ist eine Näherung mit Tangentialebenen überhaupt kein Problem. Ähnliches gilt auch für die oben angesprochen Probleme aus der Bildverarbeitung: bei vielen dieser Problemen kommt man durchaus recht weit mit traditionellen Methoden der Schätztheorie. In den letzten Jahren wurden generelle Parameterschätzverfahren entwickelt, die etablierte Methoden aus Rn in den projektiven Raum übertragen (z.B. Variationsrechnung). Solchen iterativen Verfahren können unterschiedliche Meßunsicherheiten berücksichtigen und statistisch optimierte Schätzergebnisse liefern (womit sie einen deutlichen Fortschritt darstellen gegenüber der ersten Generation von Verfahren, die Fehlerinformationen ignorieren und effektiv nur bei fehlerfreien oder annähernd fehlerfreien Daten zuverlässig funktionieren). Wenn das Niveau der Meßfehler jedoch nicht niedrig ist (d.h. mäßiges oder schlechtes Signal-Rausch-Verhältnis – was in manchen Problemen wie z.B. Orientierungsschätzung keine Seltenheit ist), so stößt man schnell an Grenzen, die sich insbesondere als Konvergenzprobleme bestehender iterativer Verfahren äußern. Schätzung homogener Vektoren ist nun einmal etwas fundamental anderes als Schätzung inhomogener Vektoren und bisherige Verfahren berücksichtigen dies in unzureichendem Maße. Außerdem kommt die Beschreibung von Unsicherheiten für homogene Schätzergebnisse seit Jahren kaum voran. Was bei inhomogenen Vektoren seit Jahrzehnten in Form von Kovarianzmatrizen Standardvokabular ist, funktioniert bei homogenen Vektoren nur sehr eingeschränkt mit Näherungen und Sonderfällen. Die vorliegende Arbeit versucht, diese Grenzen zu sprengen und erste Schritte hin zu einer Schätztheorie für homogene Vektoren zu entwickeln. Dazu werden zwei grundverschiedene Gebiete weiterentwickelt und verknüpft: Richtungsstatistik und Estimationstheorie. Konkrete Schätzprobleme aus der Bildverarbeitung dienen dafür als Motivation and Anwendung. Zunächst wird die Statistik von Richtungen (vorzeichnenbehaftete Einheitsvektoren) und Achsen (Einheitsvektoren mit unbestimmtem Vorzeichen) vorgestellt, wobei die Richtungsstatistik nicht weiter ausgeführt wird und im folgenden nur Punkte (d.h. Rn) und Achsen (d.h. Pn) behandelt werden. Die achsiale Statistik, die bisher nur als Spezialfall der Richtungsstatistik mit symmetrischer Verteilungsdichtefunktion angesehen wird, wird dabei weiterentwickelt und achsiale Daten werden als dritter gleichberechtigter Datentypen neben Punktdaten und Richtungsdaten etabliert. Dies erlaubt die Entwicklung von neuartigen statistischen Beschreibungsgrößen wie Mittelwerte, Erwartungwerte oder Varianzen achsialer Verteilungen ...
show moreshow less
In this thesis, we opened the door towards a novel estimation theory for homogeneous vectors and have taken several steps into this new and uncharted territory. Present state of the art for homogeneous estimation problem
In this thesis, we opened the door towards a novel estimation theory for homogeneous vectors and have taken several steps into this new and uncharted territory. Present state of the art for homogeneous estimation problems treats such vectors p 2 Pn as unit vectors embedded in Rn+1 and approximates the unit hypersphere by a tangent plane (which is a n-dimensional real space, thus having the same number of degrees of freedom as Pn). This approach allows to use known and established methods from real space (e.g. the variational approach which leads to the FNS algorithm), but it only works well for small errors and has several drawbacks: • The unit sphere is a two-sheeted covering space of the projective space. Embedding approaches cannot model this fact and therefore can cause a degradation of estimation quality. • Linearization breaks down if distributions are not highly concentrated (e.g. if data configurations approach degenerate situations). • While estimation in tangential planes is possible with little error, the characterization of uncertainties with covariance matrices is much more problematic. Covariance matrices are not suited for modelling axial uncertainties if distributions are not concentrated. Therefore, we linked approaches from directional statistics and estimation theory together. (Homogeneous) TLS estimation could be identified as central model for homogeneous estimation and links to axial statistics were established. In the first chapters, a unified estimation theory for the point data and axial data was developed. In contrast to present approaches, we identified axial data as a specific data model (and not just as directional data with symmetric probability density function); this led to the development of novel terms like axial mean vectors, axial variances and axial expectation values. Like a tunnel which is constructed from both ends simultaneously, we also drilled from the parameter estimation side towards directional/axial statistics in the second part. The presentation of parameter estimation given in this thesis deviates strongly from all known textbooks by presenting homogeneous estimation problems as a distinguished class of problems which calls for different estimation tools. Using the results from the first part, the TLS solution can be interpreted as the weighted anti-mean vector of an axial sample. This link allows to use our results from axial statistics; for instance, the certainty of the anti-mode (i.e. of the TLS solution!) can be described with a weighted Bingham distribution (see (3.91)). While present approaches are only interested in the eigenvector of the some matrix, we can now exploit the whole mean scatter matrix to describe TLS solution and its certainty. Algorithms like FNS, HEIV or renormalization were presented in a common context and linked to each other. One central result is that all iterative homogeneous estimation algorithms essentially minimize a series of evolving Rayleigh coefficients which corresponds to a series of (converging?) cost functions. Statistical optimization is only possible if we clearly identify every step as what it exactly is. For instance, the vague statement “solving Xp ... 0” means nothing but setting ˆp := arg minp pTXp pT p . We identified the most complex scenario for which closed form optimal solutions are possible (in terms of axial statistics: the type-I matrix weighted model). The IETLS approach which is developed in this thesis then solves general type-II matrix weighted problems with an iterative solution of a series of type-I matrix weighted problems. This approach also allows to built converging schemes including robust and/or constrained estimation – in contrast to other approaches which can have severe convergence problems even without such extensions if error levels are not low. Chapter 6 then is another big step forward. We presented the theoretical background of homogeneous estimation by introducing novel concepts like singular vector unbiasedness of random matrices and solved the problem of optimal estimation for correlated data. For instance, these results could be used for better estimation of local image orientation / optical flow (see section 7.2). At the end of this thesis, simulations and experiments for a few computer vision applications were presented; besides orientation estimation, especially the results for robust and constrained estimation for fundamental matrices is impressive. The novel algorithms are applicable for a lot of other applications not presented here, for instance camera calibration, factorization algorithm formulti-view structure from motion, or conic fitting. The fact that this work paved the way for a lot of further research is certainly a good sign.
show moreshow less

Download full text files

  • application/pdf PhDThesisMatthiasMuehlich.pdf (4275 KB)

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Mühlich
URN:urn:nbn:de:hebis:30-31571
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Rudolf Mester, W. Förstner
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2006/09/26
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/10/05
Release Date:2006/09/26
Pagenumber:219
First Page:XIV
Last Page:204
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS PPN:349892490
Institutes:Physik
Dewey Decimal Classification:004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $