Reduced flavin : NMR investigation of N(5)-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst

  • Background: The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases), redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. Results: N(5)-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3) and N(5) resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5)-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5) signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5) signal and the proton exchange rates are little dependent on the buffer system used. Conclusion: The exchange rates allow an estimation of the pKa value of N(5)-H deprotonation in reduced flavin to be ≥ 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK ≈ 4 for N(5)-H protonation (to form N(5)+-H2) would be consistent with a role of N(5)-H as a base.

Download full text files

Export metadata

Metadaten
Author:Peter Macheroux, Sandro Ghisla, Christoph Sanner, Heinrich Rüterjans, Franz Müller
URN:urn:nbn:de:hebis:30-31029
DOI:https://doi.org/10.1186/1471-2091-6-26
Parent Title (English):BMC biochemistry
Document Type:Article
Language:English
Date of Publication (online):2005/11/25
Date of first Publication:2005/11/25
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2006/08/25
Volume:6
Issue:26
Page Number:11
First Page:1
Last Page:11
Note:
© 2005 Macheroux et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Source:http://www.biomedcentral.com/1471-2091/6/26
HeBIS-PPN:190720697
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 2.0