Chemische Bindung in festen Elementen : Bindungslänge und Bindungsgrad

Metalle, die mit kubisch innenzentrierter Struktur oder in dichtesten Kugelpackungen kristallisieren, wandeln sich in guter Näherung ohne Volumenänderung ineinander um. Dieser bereits von Pearson 1972 beschriebene Sachve
Metalle, die mit kubisch innenzentrierter Struktur oder in dichtesten Kugelpackungen kristallisieren, wandeln sich in guter Näherung ohne Volumenänderung ineinander um. Dieser bereits von Pearson 1972 beschriebene Sachverhalt wird hier als Volumenregel formuliert. Elemente in den genannten Strukturen haben die gleiche Dichte. Mit der für die Abhängigkeit des Bindungsgrades s vom Atomabstand r von Pauling 1947 angegebenen Funktion s(r) = exp((R1 - r)/b) wird aus den Kristallstrukturen der festen Elemente das Atomvolumen berechnet, das das jeweilige Element bei gleicher Bindungswertigkeit in einer dieser Strukturen hat. Dabei werden Strukturen mit höherer Dichte als die kubisch innenzentrierte Struktur oder die dichtesten Kugelpackungen nicht gefunden. Diese und einige weitere Strukturen gleicher Dichte (+- 1%) werden hier als dichte Strukturen bezeichnet. Außer den Edelgasen sind alle Elemente, die mit dichten Strukturen kristallisieren, Metalle, doch haben eine Reihe von Metallen (Mangan, Zink, Cadmium, Quecksilber, Gallium und Zinn) nichtdichte Strukturen. Für diese und für die nichtmetallischen Elemente wird das Atomvolumen ihrer dichten Formen berechnet, d.h. das Volumen, das sie unter Normalbedingungen im dichten (metallischen) Zustand einehmen würden. Ist für ein Element der Bindungsgrad für eine Bindungslänge bekannt, so kann aus diesem das Atomvolumen im dichten Zustand abgeschätzt werden. Aus verschiedenen Strukturen von Nichtmetallen (Phosphor und Schwefel etc.) berechnet sich jeweils in guter Näherung das gleiche Atomvolumen für den dichten Zustand VD. Dies bestätigt die Gültigkeit der Pauling-Funktion. Eine weitere Bestätigung liegt darin, dass für Mangan, Kupfer und Technetium in verschiedenen Strukturen quantenmechanisch berechnete Volumenverhältnisse nach den hier abgeleiteten Beziehungen ebenfalls erhalten werden. Der dichte Zustand der Elemente erscheint hier als ein von der Kristallstruktur unabhängiger Grenzzustand der kondensierten Materie. Bei bekannter Bindungswertigkeit eines Elements können die Parameter R1 und b der Paulingfunktion (Bindungsgrad-Parameter) und damit die Abstandsabhängigkeit des Bindungsgrades berechnet werden. Dies wird für alle s-, p- und d-Elemente durchgeführt. Dabei ergeben sich für die Länge der Einfachbindung R1 Werte, die zum Teil erheblich von den Literaturdaten abweichen. Der Parameter b ist im Gegensatz zu den Literaturangaben nicht konstant, sondern der dritten Wurzel aus VD proportional. Aufgrund derBindungsgrad-Parameter kann derBeitrag vonMetall-Metall-Bindungen zur Wertigkeit in Verbindungen bestimmt werden. Die Volumenverhältnisse von intermetallischen Phasen sowie Hochdruckformen der Elemente werden aufgrund der hier abgeleiteten Beziehungen diskutiert.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Sven Hübner
URN:urn:nbn:de:hebis:30-25396
Referee:Martin Trömel, Wolf Aßmus
Advisor:Martin Trömel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/03/28
Year of first Publication:2000
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2000/11/24
Release Date:2006/03/28
SWD-Keyword:Chemisches Element; Fester Zustand; Molekülparameter
Pagenumber:180
HeBIS PPN:179324160
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $