Laser induced vibrational excitation of acrylonitrile adsorbed on copper

  • A new experimental system has been set up with the ability to investigate catalytic processes and charge transfer of acrylonitrile on copper. For this purpose a new Time of Flight Mass Spectrometer to measure both the reaction outcome and electron energy distributions has been designed and tested. First experiments have been carried out, in which the width of the two-photon photoelectron energy distribution can be varied by changing the wavelength of the incident laser beam. This method allows high precision measurements of the work function and will be useful in the study with adsorbates, physi- or chemisorbed. In first adsorption measurements the excitation of vibrational modes of acrylonitrile has been seen to be consistent with earlier gas-phase experiments. Electron energy spectra taken with the electron analyzer with high resolution showed a clear defect in the electron yield at energies around the energy of one vibrational mode, indicating the possibility of resonant vibrational excitation by electron impact. More indications to that process were found i first electron spectra from the new TOF-MS, since a threshold for the capture probability is found at energies close to vibrational excitation. The threshold vanishes when the exposure is amplified significantly, indicating that electrons are scattered multiple and no resonance are be observed anymore. The experiments carried out were just the starting point in understanding the mechanism of the reaction. A new femtosecond laser system which is currently set up will give not only a time-resolved information on the reaction pathways but also give the possibility to create non-thermal electrons and to study intermediate states of the photoemission and the influence of the adsorbate on them. In addition the rotation of the electron analyzer will permit angle-resolved measurements of the scattering process of the electrons and the vibrational excitation via this pathway. With the new cooling system applied it will also be interesting to study the excitation process at lower temperatures. Below -160° C there are different geometries of the molecule predicted to be present at the surface. At these temperatures the thermal effects should play a major role, so that a thermal decoupling of the electrons is very desirable.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Robert Wallauer
URN:urn:nbn:de:hebis:30-51342
Document Type:diplomthesis
Language:English
Date of Publication (online):2007/11/23
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2007/11/23
HeBIS-PPN:194742814
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht