Studien zur Ausdehnung des Eingangsfensters des CBM-TRDs

  • Erwärmt man Eis, so brechen die Molekülbindungen auf und bei einer kritischen Temperatur von 0°C entsteht durch einen Phasenübergang flüssiges Wasser. Dies ist wohl bekannt und das Phasendiagramm, sowie die Anomalie von Wasser ein bekanntes Hilfsmittel in Physik und Chemie. Doch was passiert, wenn man Kernmaterie erhitzt? Kann diese auch verschiedene Aggregatzustände annehmen? Physiker erwarten, dass ab einer definierten kritischen Temperatur auch die Bindungen zwischen den kleinsten Teilchen unserer Materie, den Quarks, aufbrechen und das bis dahin bestehende Hadronengas in ein Quark-Gluon-Plasma übergeht. In Experimenten auf der ganzen Welt sollen die Eigenschaften des Quark-Gluon- Plasmas und der Phasenübergang der Materie untersucht werden. Daraus möchte man ein Phasendiagramm für die hadronische Materie entwickeln (Abb. 1). In verschiedenen Experimenten werden die unterschiedlichen Stationen des Phasendiagramms abgelaufen. Die laufenden Projekte an den großen Teilchenbeschleuniger Anlagen am LHC (Large Hadron Collider) am CERN (Conseil Européen pour la Abbildung 1: Das Phasendiagramm stark wechselwirkender Materie. Aufgetragen ist die Temperatur gegen die Baryonendichte. Der braune Bereich stellt den Übergangsbereich zwischen Hadronengas und Quark-Gluon-Plasma dar [ZAM]. Recherche Nucléaire) und am RHIC (Relativistic Heavy Ion Collider) in Brookhaven untersuchen das Phasendiagramm bei hohen Temperaturen und geringen Dichten. An der neuen, noch im Aufbau befindlichen Beschleunigeranlage FAIR (Facility for Antiproton and Ion Research) soll nun, im Rahmen des CBM-Experiment (Compressed Baryonic Matter), das Phasendiagramm bei hohen baryonischen Dichten und geringeren Temperaturen untersucht werden. Dafür werden spezielle Detektorkomplexe entwickelt. Diese werden benötigt, um herauszufinden, wann ein Quark-Gluon-Plasma vorliegt. Hierbei ist die Identifizierung von Elektronen von großer Bedeutung. Beim CBM-Experiment wird zur Unterscheidung zwischen Pionen und Elektronen unter anderem ein Transition Radiation Detektor (TRD) verwendet. (Kapitel 4) Dessen Eingangsfenster besteht aus einer dünnen Mylar®-Folie, welche empfindlich auf Druckschwankungen reagiert. Dies führt zu einer Veränderung des Kammervolumens, was zu einer Variation der Gasverstärkung und des daraus gewonnenen Signals führt. Die Auswirkungen von Druckschwankungen auf das Eingangsfenster des CBM-TRDs sollen in der folgenden Arbeit anhand von Simulationen (Kapitel 5) sowie anhand von Messungen (Kapitel 6) untersucht und verglichen werden. Zunächst wird jedoch ein Überblick der Grundlagen gegeben.

Download full text files

  • BachelorArbeit-Katrin_Reuss.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kathrin Reuß
URN:urn:nbn:de:hebis:30:3-334515
URL:http://www2.uni-frankfurt.de/48069980/BachelorArbeit-Katrin_Reuss.pdf
Referee:Christoph BlumeORCiDGND, Harald AppelshäuserGND
Advisor:Christoph Blume
Document Type:Bachelor Thesis
Language:German
Year of Completion:2013
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2014/05/06
Note:
Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL.
HeBIS-PPN:341318337
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG