Real time observables for the Quark-Gluon Plasma from the lattice

  • Das Schwerionenkollisionen Programm der Beschleuniger RHIC und LHC gibt Hinweise auf einen neuen Zustand hadronischer Materie --- das Quark-Gluon Plasma. Dieses zeichnet sich durch eine zumindest partielle Aufhebung des confinements aus, welches besagt, dass keine freien Quarks beochtbar sind. Aus einer Beschreibung der experimentellen Daten mit relativistischer Hydrodynamik folgen weitere Eigenschaften. So geht das in einer Schwerionenkollision erzeugte Quark-Gluon Plasma nach sehr kurzer Zeit, etwa 1 fm/c, in ein zumindest lokales thermisches Gleichgewicht über. Durch die Lorentzkontraktion der beiden Schwerionen erwartet man, dass der Zustand direkt nach der Kollision durch eine Impulsanisotropie in der transversal-longitudinalen Ebene bestimmt wird. Somit setzt das Erreichen eines thermischen Gleichgewichts zunächst eine Isotropisierung voraus. Bisherige Studien haben gezeigt, dass gluonische Moden bei dieser Isotropisierung durch Verursachung einer chromo-Weibel Instabilität eine entscheidende Rolle spielen. Weiterhin verhält sich das Quark-Gluon Plasma wie eine fast perfekte Flüssigkeit. Eine Berücksichtigung dissipativer Terme in der hydrodynamischen Beschreibung erfordert das Hinzufügen weiterer Terme zu den entsprechenden Bewegungsgleichungen. Diese sind proportional zu Transportkoeffizienten, welche durch die zugrunde liegende mikroskopische Theorie festgelegt sind. Diese Theorie ist Quantenchromodynamik. Sie beschreibt die starke Wechselwirkung der Quarks und Gluonen und ist ein fundamentaler Baustein des Standardmodells der Teilchenphysik. Da im Regelfall Prozesse der starken Wechselwirkung nichtperturbativ sind, beschreiben wir QCD unter Verwendung einer Gitterregularisierung. Diese beruht auf einer Diskretisierung der vierdimensionalen Euklidischen Raumzeit durch einen Hyperkubus mit periodischen Randbedingungen und ermöglicht ein Lösen der QCD mit numerischen Methoden. Allerdings ist die Anwendung der Gittereichtheorie auf Systeme im thermischen Gleichgewicht beschränkt und kann somit keine Prozesse beschreiben, die auf Echtzeit basieren. Transportkoeffizienten entsprechen Proportionalitätskoeffizienten, die die Relaxation einer Flüssigkeit oder eben eines Quark-Gluon Plasmas von einer kleinen Störung beschreiben. Damit sind sie unmittelbar mit der Zeit verknüpft. Über Kubo-Formeln lassen sie sich jedoch mit Gleichgewichtserwartungswerten retardierter Korrelatoren verknüpfen und werden so in Gitter QCD zugänglich. In der vorliegenden Dissertation berechnen wir den Transportkoeffizienten κ in Gittereichtheorie für das Yang-Mills Plasma. Dabei nutzen wir aus, dass dieser Transportkoeffizient eine triviale analytische Fortsetzung vom retardierten zum Euklidischen Korrelator besitzt, welcher direkt in Gittereichtheorie zugänglich ist. Es ist die erste nichtperturbative Berechnung eines Transportkoeffizienten in QCD ohne weitere Annahmen, wie die Maximum Entropie Methode oder Ansätze, zu treffen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian Schäfer
URN:urn:nbn:de:hebis:30:3-350266
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Owe PhilipsenORCiDGND, Dirk H. RischkeORCiDGND
Advisor:Owe Philipsen
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2014/09/11
Date of first Publication:2014/09/11
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/09/08
Release Date:2014/09/11
Page Number:165
First Page:VIII
Last Page:150
HeBIS-PPN:347425615
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht