Natural fractionation of uranium isotopes

  • Das Thema dieser Arbeit war die Untersuchung der natürlichen Variationen von den zwei primordialen Uranisotopen (238U und 235U) mit einem Schwerpunkt auf Proben, die (1) die kontinentale Kruste und ihre Verwitterungsprodukte (d.h. Granite, Shales und Flusswasser) repräsentieren, (2) Produkte der hydrothermalen Alteration vom mittelozeanischen Rücken widerspiegeln (d.h. alterierte Basalte, Karbonatgänge und hydrothermales Wasser) und (3) aus abgegrenzten euxinischen Becken (d.h. Proben aus der Wassersäule und den dazugehörigen Sedimenten) stammen. Das allgemeine Ziel war das Verständnis, unter welchen Bedingungen und Mechanismen eine Fraktionierung der zwei häufigsten Uranisotope (238U und 235U) in der Natur erfolgt, zu verbessern. Die untersuchten Haupt- und Nebenflüsse unterscheiden sich sowohl in Ihrer Urankonzentration (c(U)) als auch in Ihrer Uranisotopenzusammensetzung (δ238U), wobei die Nebenflüsse eine geringere Urankonzentration (0.87 nmol/kg bis 3.08 nmol/kg) und eine schwerere Uranisotopenzusammensetzung aufweisen (-0.29 ‰ bis +0.01 ‰ im δ238U) im Vergleich zu den Hauptflüssen (c(U) = 5.19 nmol/kg bis 11.69 nmol/kg und d238U = -0.31 ‰ bis +0.13 ‰) aufweisen. Die untersuchten Gesteinsproben fallen alle in einen recht schmalen Bereich von δ238U, zwischen -0.45 ‰ und -0.21 ‰, mit einem Durchschnittswert von -0.30 ‰ ± 0.04 ‰ (doppelte Standardabweichung). Deren Uranisotopenvariationen sind unabhängig von der Urankonzentration (11.8 µg/g bis 1.3 µg/g), dem Alter (3.80 Ga bis 328 Ma), der Probenlokalität und Grad der Differenzierung. Basierend auf den Ergebnissen der Hauptflüsse, die die Uranhauptquelle für den Ozean darstellen, schlagen wir für zukünftige Berechnungen in der Massenbilanz des Urans einen neuen Wert als beste Abschätzung für die Quelle des Urans im Ozean vor, δ238U = -0.23 ‰. Die Produkte der hydrothermalen Alteration, alterierte Basalte und Kalziumkarbonatgänge, zeigten etwas stärkere Isotopenvariationen (δ238U zwischen -0.63 ‰ und +0.27 ‰) als erwartet und die hydrothermalen Fluide wiesen eine etwas leichtere Uranisotopenzusammensetzung als Meerwasser ((-0.43 ± 0.25) ‰ vs. (-0.37 ± 0.03) ‰) auf. Diese Ergebnisse sind in Übereinstimmung mit einem Modell, dass annimmt, dass die beobachtete Isotopenfraktionierung hauptsächlich ein Ergebnis von Redoxprozessen ist, z.B. die partielle Reduktion von löslichem UVI aus dem Meerwasser während der hydrothermalen Alteration, was zu einer Anreicherung der schweren Uranisotope in der reduzierten Uranspezies (UIV) führt und 2) das bevorzugte Entfernen von UIV aus den hydrothermalen Fluid und der Einbau in die alterierte ozeanische Kruste. Durch diesen Prozess wird das hydrothermale Fluid an schweren Uranisotopen verarmt und somit würden auch die alterierten Basalte und Karbonate ein niedriges δ238U aufweisen, wenn sie mit dem isotopisch leichten hydrothermalen Fluid in Kontakt gekommen sind. Die Untersuchung von Wasser- und Sedimentproben aus der Ostsee und dem anoxischen Kyllaren Fjord (Norwegen) auf deren Uran- und Mo-Isotopenzusammensetzung zeigte, dass die Uranisotopenzusammensetzung der Sedimente abhängt von (1) dem Ausmaß des Uranaustrags aus der Wassersäule (in einer ähnlichen Art und Weise wie bei den Molybdänisotopen) und (2) der Sedimentationsrate, d.h. der Fraktion von authigenem- relativ zum dedritischen Uran in den Sedimenten. Aufgrund der hohen Sedimentationsrate zeigen die Sedimente aus dem Kyllaren Fjord nur eine moderate authigene Urananreicherung und eine leichtere Uranisotopenzusammensetzung als Sedimente aus dem Schwarzen Meer. In den anoxischen Becken der Ostsee erfolgt dagegen eine starke Mo- und schwache U-Isotopenfraktionierung zwischen Wasser und Sediment. Durch die regelmäßigen auftretenden Spülereignisse mit sauerstoffreichem Wasser wurden vermutlich die ursprünglichen anoxischen Mo- und U-Isotopensignaturen der Sedimente verändert. Demzufolge müssen die Sedimente durchgehend anoxischen Bedingungen ausgesetzt sein, um eine Mo- und U-Isotopensignatur von den Redoxbedingungen während der Ablagerungen zu speichern. Der Vergleich zwischen Molybdän- und Uranisotopen in der Ostsee und dem anoxischen Kyllaren Fjord zeigte, dass sich Uran- und Molybdänisotope in stark euxinischen Wassersäulen (c(H2S) > 11 µmol/L) entgegengesetzt verhalten. Dementsprechend ergänzen sich die beiden Isotopensysteme und können genutzt werden, um die Ablagerungsbedingungen in abgeschlossenen Becken und die Redoxentwicklung des Paläoozeans zu untersuchen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Janine Noordmann
URN:urn:nbn:de:hebis:30:3-334013
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Stefan Weyer, Michael E. Böttcher
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/02/26
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/01/24
Release Date:2015/02/26
Page Number:XII, 165
HeBIS-PPN:355747855
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht