Characterization of Ataxin-2 and its interaction partners

  • Die Spinozerebelläre Ataxie Typ 2 (SCA2) ist eine autosomal dominant vererbte neurodegenerative Krankheit, welche durch die Expansion des Trinukleotids Cytosin-Adenin-Guanin von ~22/23 auf >32 im Ataxin-2 Gen (ATXN2) verursacht wird. Dieses Trinukleotid codiert für die Aminosäure Glutamin weshalb SCA2 auch zu den Polyglutaminerkrankungen zählt. Zu dieser Gruppe zählen außerdem fünf weitere SCA-Subtypen sowie drei weitere neurodegenerative Erkrankungen, darunter die Huntington-Krankheit. SCA2 wurde 1971 zum ersten Mal von Wadia und Swami beschrieben und unterscheidet sich von den anderen SCAs aufgrund der typischen Störung der sakkadischen Augenbewegungen. Weitere klinische Symptome von SCA2 sind Ataxie, Tremor, Dysmetrie, Dysarthrie, Hyporeflexie und Dysdiadochokinese. Die Symptome gehen auf einen neuronalen Verlust insbesondere im Cerebellum, aber auch in anderen Hirnregionen wie zum Beispiel dem Hirnstamm zurück. Atxn2 wird in weiten Teilen des Zentralnervensystems aber auch in vielen nicht-neuronalen Geweben exprimiert. Es handelt sich um ein überwiegend cytoplasmatisch lokalisiertes Protein, welches im Gegensatz zu vielen anderen SCA-Proteinen cytoplasmatische und nur selten nukleäre Aggregate bildet. Die exakte Funktion von Atxn2 ist bisher unklar, es wurde allerdings mehrfach gezeigt, dass es in die mRNA Translation involviert ist aufgrund seiner Interaktion mit dem PolyA-bindenden Protein PABPC1. Eine Expansion des Trinukleotids in Ataxin-2 kann nicht nur zu SCA2 führen, sondern stellt bei Wiederholungen zwischen 27 und 32 CAGs auch ein erhöhtes Risiko für eine Erkrankung an Amyotropher Lateralsklerose (ALS) und anderen neurodegenerativen Krankheiten dar. Eine Interaktion zwischen ATXN2 und dem ALS-verursachenden TDP43 (Tardbp) wurde bereits zahlreich beforscht, da Aggregate von ATXN2 in Motoneuronen des Rückenmarks von ALS-Patienten und aggregiertes TDP43 in SCA2-Neuronen beobachtet wurden. Generell sind die Mechanismen, die zur Pathologie von SCA2 und ALS führen, noch weitgehend unklar. Ziel dieser Arbeit war es daher auf der einen Seite einen Einblick in den Pathomechanismus von SCA2 zu erhalten, indem mögliche oder bereits bekannte Interaktoren in etablierten Atxn2-Mausmodellen untersucht wurden. Auf der anderen Seite wurden zwei neue Mausmodelle charakterisiert, um ihre Eignung für die Erforschung von ALS und SCA2 zu prüfen. Für den ersten Teil der Arbeit dienten Daten aus mehreren Transkriptomstudien von Atxn2-Knock-Out (KO) und Atxn2-CAG42-Knock-In (KIN) Mäusen als Grundlage. Konnten die Daten mit einer unabhängigen Methode bestätigt werden, folgten weitere Untersuchungen auf mRNA und Proteinebene sowie unter zusätzlicher Verwendung von Zellkultur und Patientenmaterial. Dadurch konnten neue Interaktionspartner von ATXN2 identifiziert und bereits bekannte in diesen Mausmodellen bestätigt werden. So wurde zum Beispiel eine Interaktion von ATXN2 mit der E3-Ubiquitin-Protein-Ligasekomponente FBXW8 gezeigt und deren Beteiligung am Abbau von expandiertem ATXN2. Außerdem wurde eine Interaktion von FBXW8 mit dem bereits bekannten ATXN2-degradierenden Protein PARK2 gezeigt. Eine Hochregulierung des Fbxw8 Transkripts wurde sowohl im Atxn2-CAG42-KIN-Mausmodell als auch in SCA2-Patientenfibroblasten gefunden, während Park2 in keinem der Modelle signifikant veränderte Transkriptspiegel aufwies. Diese Daten belegen die Relevanz von Fbxw8 für den Abbau von moderat-expandiertem Atxn2 und begründen weitere Studien zur genauen Funktion dieses Proteins im Pathomechanismus von Atxn2. Des Weiteren wurden diverse Kalziumhomöostasefaktoren untersucht, welche eine konsistente Herunterregulierung der Transkripte in beiden Mausmodellen aufwiesen. Auf Proteinebene zeigten sich jedoch Unterschiede zwischen den Modellen. Diese Daten belegen, dass zwar ähnliche Transkriptveränderungen im KIN- und KO-Modell auftreten, diesen aber vermutlich verschiedene Mechanismen zugrunde liegen. Welche Mechanismen dies genau sind bleibt zu klären, es ist jedoch wahrscheinlich, dass im KIN-Modell die Aggregatbildung sowie in beiden Modellen die Beteiligung von ATXN2 an der Translationregulation eine Rolle spielen. Die Ergebnisse dieser Studie unterstreichen die Relevanz des Ca2+ Signalwegs für die Entwicklung von SCA2. Der zweite Teil der Arbeit beinhaltet die Charakterisierung einer ATXN2/TDP43 Doppelmutante auf Verhaltensebene sowie die gründliche Evaluierung des Phänotyps einer vollkommen neuen SCA2 Mausmutante. Während in der Doppelmutante trotz doppelter Genmutation nur ein sehr schwacher Phänotyp auf Verhaltensebene festgestellt werden konnte und bis zu einem Alter von 12 Monaten keine Potenzierung der Mutationen zu beobachten war, zeigte die Atxn2-CAG100-KIN Maus signifikante und früh auftretende Pathologie. Neben einer verminderten Überlebensrate, einem Gewichtsverlust und diversen motorischen Störungen, konnten auch Aggregate des mutierten Proteins in diversen Hirnregionen identifiziert werden. Der Atxn2-CAG100-KIN Phänotyp spiegelt die humanen Symptome daher recht gut wider, weshalb diese Mausmutante ein wertvolles Modell für die weitere SCA2-Forschung darstellt. Zusammengefasst zeigt diese Arbeit die Bedeutung des ATXN2-Interaktors FBXW8 im SCA2-Mausmodell als auch im Patientenmaterial. Sie betont die Relevanz des Atxn2-KO-Modells in Bezug auf Störungen der Kalziumhomöostase und dokumentiert die Alters- und Gewebespezifität dieser Veränderungen. Außerdem beinhaltet sie die vorläufige Beschreibung eines kombinierten Atxn2/TDP43-Mausmodells und schließlich die ausführliche Charakterisierung eines vollkommen neuen und äußerst wertvollen SCA2-Mausmodells.

Download full text files

Export metadata

Metadaten
Author:Melanie Vanessa HalbachGND
URN:urn:nbn:de:hebis:30:3-379619
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Anna Starzinski-PowitzORCiDGND, Georg AuburgerORCiDGND
Advisor:Anna Starzinski-Powitz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/07/30
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/07/28
Release Date:2015/07/30
Page Number:219
Last Page:213
HeBIS-PPN:362598371
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht