Untersuchung zur optischen Regulation von elektrischer Leitfähigkeit in DNA und Synthese neuer photolabiler Schutzgruppen für Protein- und Oligonukleotidanwendungen

  • Im Rahmen der vorliegenden Arbeit wurde einerseits der Einsatz lichtaktivierbarer Oligonukleotide zur Kontrolle der Leitfähigkeit entlang von DNA untersucht sowie neue photoaktivierbare Verbindungen für die Peptidchemie und für eine neu entwickelte Variante des SELEX (Systematic Evolution of Ligands by EXponetial enrichment) Verfahrens synthetisiert. DNA vermittelte Ladungsübertragung verläuft entlang des gestapelten π-Systems der heteroaromatischen Nukleobasen. Die Leitfähigkeit von Oligonukleotiden reagiert daher empfindlich auf Störungen in der Watson-Crick-Basenpaarung. Die in der Arbeitsgruppe Heckel etablierte Technik, Nukleobasen an für die Basenpaarung relevanten Positionen mit photolabilen Schutzgruppen zu modifizieren, sollte daher mit Systemen der Ladungsübertragung in DNA kombiniert werden. Im Verlauf dieses Projekts wurden zwei literaturbekannte Varianten, in denen Ladungstransport über einen lichtinduzierten Redoxprozess zwischen Metallkomplexen ablaufen und über eine dabei unterdrückte Fluoreszenz optisch verfolgt werden sollte, als ungeeignete Systeme identifiziert. Durch den Wechsel zu elektrodengestützter Leitfähigkeitsmessung konnte der prinzipielle Effekt von Leitfähigkeit in perfekt gepaarter DNA und deutlich reduziertem Stromfluss in Oligonukleotiden mit Fehlpaarungen gezeigt werden. Beim Einsatz photolabil geschützter Oligonukleotide konnte jedoch auch in diesem System noch nicht der gewünschte Effekt gefunden werden. Im zweiten Projekt dieser Arbeit wurden neue photolabile Verbindungen hergestellt, die Peptide nach ihrem Einbau in das Peptidrückgrat durch Zwei-Photonen-Anregung mit IR-Licht spalten sollen. Drei entsprechende Nitrodibenzofuran-Verbindungen und ein Cumarin-Baustein konnten erfolgreich synthetisiert werden. Die neuen Moleküle zeigten im Rahmen der Peptid-Festphasensynthese Stabilitätsprobleme. Diese Schwierigkeiten konnten durch Peptid-Kopplungen in Lösung umgangen werden. Mit Hilfe eines der hergestellten Bausteine wurden zwei Tripeptide hergestellt, die jeweils mit dem Farbstoff ATTO565 markiert und hinsichtlich ihrer photochemischen Eigenschaften charakterisiert wurden. Der neue Baustein zeigte neben den Eigenschaften als photospaltbare Gruppe, dass er gleichzeitig ein Quencher für den Farbstoff ATTO565 darstellt. Nach Belichtung stieg die Fluoreszenz um den Faktor 81 an. Die Aktivierung gelang wie erwartet mit Ein- und Zwei-Photonen-Anregung. In Kollaboration mit der Arbeitsgruppe von Prof. Heilemann konnten Antiköper mit einem der Tripeptide modifiziert werden und die Kompatibilität der Verbindung mit hochaufgelöster Einzelmolekül-Fluoreszenzmikroskopie demonstriert werden. Im letzten in dieser Arbeit thematisierten Projekt wurden neue lichtspaltbare Verbindungen für eine Variante des SELEX-Prozesses hergestellt. Diese Verbindungen erlauben die temporäre Einführung einer Indol Modifikation an Alkin-modifizierte Oligonukleotide über die sogenannte Click-Chemie. Neue chemische Modifikationen wie die hier verwendeten Indole erhöhen die chemische Vielfalt der Oligonukleotide. Eine größere Vielfalt führt zu neuen potentiellen Wechselwirkungen gegenüber Verbindungen, gegen die mit Hilfe herkömmlicher SELEX-Verfahren keine Aptamere erzeugt werden konnten. Da die chemische Modifikation über eine photolabile Gruppe an die Oligonukleotide gebunden wird, kann sie photochemisch von der DNA gespalten werden, wodurch eine Interferenz der Modifikation mit den enzymatisch katalysierten Schritten innerhalb der SELEX ausgeschlossen werden kann.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Felix Friedrich
URN:urn:nbn:de:hebis:30:3-386803
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Alexander HeckelORCiDGND, Joachim W. EngelsORCiDGND
Advisor:Alexander Heckel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2015/12/10
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/12/04
Release Date:2015/12/10
Tag:DNA Leitfähigkeit; Photolabiler Quencher; SELEX
Page Number:187
HeBIS-PPN:36752886X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht