Reinigung organischer Halbleiter, Eigenschaften von Perfluoranthracen und dessen Verhalten in co-kristallinen Systemen

Zur Untersuchung der Eigenschaften organischer Halbleiter sollte die Ultrareinigung organischer Materialien durch Zonenschmelzen ermöglicht werden und anschließend dieses Verfahren auf einen neuen molekularen n-Halbleite
Zur Untersuchung der Eigenschaften organischer Halbleiter sollte die Ultrareinigung organischer Materialien durch Zonenschmelzen ermöglicht werden und anschließend dieses Verfahren auf einen neuen molekularen n-Halbleiter, Perfluoranthracen, angewendet werden. Ein Großteil der vorliegenden Arbeit beschäftigte sich daher mit der Konstruktion einer Zonenschmelze. Diese sollte in der Lage sein, laborübliche Mengen organischer Materialien zu reinigen (ca. 0,5-5 g). Ein Eigenbau wurde in Angriff genommen, um eine optimale Anpassung an die zu erwartenden Aufgabenstellungen zu erreichen. Daher wurde das System in einer modularen Bauweise konzipiert, sodass einzelne oder mehrere Heizzonen verwendet werden können und die Apparatur auch später beliebig erweitert werden kann. Zunächst mussten Erfahrungen mit der Wärmezufuhr und Kühlung gesammelt werden und ein verlässlicher Zugmechanismus entwickelt werden, der die Probe in kontrollierter, langsamer Weise durch die Apparatur bewegt. Ein grosses Problem stellte das Bersten der gläsernen Probenbehältnisse beim Zonenschmelzen einiger Substanzen dar. Nach dem erfolgreichen Einsatz verschiedener Puffermaterialien wurde schliesslich ein apparativer Aufbau entwickelt, der auf eine aktive Kühlung verzichtete. Hierdurch konnte die unkontrollierte Sublimation unterbunden werden und das Bersten der Probenbehältnisse wurde unterdrückt. Gleichzeitig musste jedoch sichergestellt werden, dass die Effektivität des Zonenschmelzen auch ohne den Einsatz grosser Temperaturgradienten gegeben war. Die Reinigung verschiedener kommerziell verfügbarer Substanzen wurde getestet und gleichzeitig die Analytik der organischen Verunreinigungen mittels Gaschromatographie im Arbeitskreis etabliert. Das Zonenschmelzen ermöglichte schließlich die Reinigung von Anthracen bis auf 99,97%. In Dibenzothiophen konnten der Anteil der Nebenkomponenten unter die Nachweisgrenze verringert werden. Nach der Herstellung von Perfluoranthracen wurden unterschiedliche Methoden zur Reinigung getestet und schließlich das Zonenschmelzen angewendet. Es war möglich, kleinere Mengen an Perfluoranthracen in einer Reinheit von bis zu 99,11% zu isolieren, was durch reguläre Reinigungsverfahren wie Umkristallisation oder Sublimation nicht erreicht werden konnte. Dennoch limitierte die thermische Instabilität des Materials die Effektivität des Zonenschmelzens.
Weiterhin wurden die optische und elektrochemische Bandlücke von Perfluoranthracen untersucht, um Aussagen über die mögliche Anwendung als n-Halbleiter treffen zu können. Es wurde eine optische Bandlücke von 3,08 eV und eine elektrochemische Bandlücke von 2,82 eV ermittelt. Im Vergleich zu Anthracen wurden niedriger liegende Grenzorbitale bestimmt, was ein Einbringen von Elektronen in das energetisch niedrigste unbesetzte Molekülorbital (LUMO) und somit n-Halbleitung vereinfachen könnte. Schließlich wurde untersucht, ob sich durch die äquimolare Mischung von Anthracen und Perfluoranthracen Mischkristalle herstellen lassen, die Charge-Transfer-Eigenschaften (CT) und eine hohe elektrische Leitfähigkeit aufweisen würden. Hierzu mussten zunächst ausreichend grosse Einkristalle gezüchtet werden, von denen anschliessend die Röntgenkristallstruktur bestimmt wurde. Das einkristalline Material zeigte eine gemischt gestapelte Anordnung (siehe Abbildung 0.2), wie sie für andere Systeme, beispielsweise Benzol/Hexafluorbenzol, bekannt ist. In feldstärkenabhängigen und temperaturabhängigen Messungen wurden danach die elektrischen Eigenschaften des Materials charakterisiert. Es konnten keine Hinweise für CT-Eigenschaften gefunden werden. Dennoch besitzt der Mischkristall im Vergleich zu Anthracen eine etwa 10 12 -fach höhere Leitfähigkeit und erreicht Werte guter anorganischer Halbleiter. Das temperaturabhängige Verhalten selbst zeigt aber keine typisch halbleitenden Charakteristiken, da für die thermisch angeregte Zunahme der Ladungsträgerkonzentration im untersuchten Mischkristall kein lineares Verhalten im Arrhenius-Plot gefunden wurde. Die genauen Leitungsmechanismen bedürfen weiterer Untersuchungen. In nachfolgenden Experimenten könnte die mögliche Anwendbarkeit in elektronischen Anwendungen geklärt werden.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Frederic Farr
URN:urn:nbn:de:hebis:30:3-391243
Place of publication:Frankfurt am Main
Referee:Andreas Terfort, Norbert Auner
Advisor:Andreas Terfort
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2016/01/29
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/12/14
Release Date:2016/01/29
Tag:Anthracen; Halbleiter; Perfluoranthracen
Pagenumber:161
HeBIS PPN:369240073
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $