Regulation of endothelial metabolism by laminar shear stress and flow-induced transcription factor KLF2

  • Flow hemodynamics regulates endothelial cell (EC) responses and laminar shear stress induces an atheroprotective and quiescent phenotype. The flow-responsive transcription factor KLF2 is a pivotal mediator of endothelial quiescence, but the precise mechanism is unclear. In this doctoral study, we assessed the hypothesis that laminar shear stress and KLF2 regulate endothelial quiescence by controlling endothelial metabolism. Laminar flow exposure and KLF2 over expression in HUVECs reduced glucose uptake. Endothelial specific deletion of KLF2 (EC-KO) in mice and subsequent infusion of labeled glucose in Langendorff perfused hearts induced glucose uptake in ECs lacking KLF2. Bioenergetic measurements revealed that KLF2 reduces and glycolytic acidification in vitro. Mechanistically, RNA sequencing analysis of shear stimulated ECs showed reduced expression of key glycolytic enzymes Hexokinase 2, PFKFB3 and PFK-1. KLF2 also reduced expression of these enzymes at protein level. KLF2 knockdown in shear stimulated ECs reversed the reduction in expression of PFKFB3 and PFK-1, indicating KLF2-dependency. Promoter analysis revealed KLF binding sites in the promoter of PFKFB3 and KLF2 over expression markedly reduced PFKFB3 promoter activity which was abolished on mutation of the KLF binding site. In addition, PFKFB3 knockdown reduced glycolysis while over expression increased glycolysis. Over expression of PFKFB3 along with KLF2 partially reversed the KLF2-mediated reduction in glycolysis. Importantly, PFKFB3 over expression reversed KLF2-mediated reduction in angiogenic sprouting and network formation in vitro. Ex-vivo aortic ring assays revealed an increase in endothelial sprouting from aortas from KLF2 EC-KO mice, which was partially reversed upon PFKFB3 inhibition by 3-PO. In conclusion, work performed during this doctoral thesis demonstrates that laminar shear stress and KLF2 mediated repression of endothelial metabolism via regulation of PFKFB3 contributes to the anti-angiogenic and quiescent properties of the endothelium.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anuradha Doddaballapur
URN:urn:nbn:de:hebis:30:3-403510
Place of publication:Frankfurt am Main
Referee:Stefanie DimmelerORCiDGND, Amparo Acker-PalmerORCiDGND
Advisor:Stefanie Dimmeler
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/06/15
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/12/09
Release Date:2016/06/15
Page Number:145
HeBIS-PPN:381594467
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht