Die DEAD-Box RNA-Helikase DDX6 rekrutiert P-TEFb aus dem 7SK snRNP für die Inkorporation in den AF4-Superelongationskomplex

Die eukaryotische RNA-Polymerase II (RNAPII) ist der zentrale Faktor für die Umsetzung des genetischen Codes in funktionelle Proteine. Durch die Transkription wird die statische Information der DNA in ein transient nutzb
Die eukaryotische RNA-Polymerase II (RNAPII) ist der zentrale Faktor für die Umsetzung des genetischen Codes in funktionelle Proteine. Durch die Transkription wird die statische Information der DNA in ein transient nutzbares RNA-Molekül umgewandelt. Bei diesem fundamentalen Prozess der Genexpression wird ein spezifischer DNA-Abschnitt des Genoms abgelesen und in die komplementäre RNA transkribiert, die entweder direkt regulatorische bzw. funktionelle Aufgaben in der Zelle übernimmt oder als Matrize für die Proteinbiosynthese dient. Zur Erhaltung der Funktionalität eines Organismus und zur schnellen und gezielten Reaktion auf exogene Reize ist eine strikte Regulation der Transkription und der zahlreichen beteiligten Faktoren notwendig. Aufgrund der zentralen Rolle in der Genexpression ist diese Regulation äußerst vielschichtig und erfordert eine feinabgestimmte Maschinerie an Enzymen und Transkriptionsfaktoren, deren genaue Wirkungsweise und Abhängigkeit noch nicht vollständig verstanden sind. Fehler in der Transkriptionsregulation werden mit einer Reihe von schwerwiegenden metabolischen Störungen und der möglichen malignen Transformation der betroffenen Zelle in Verbindung gebracht.
Während einige Regulationsmechanismen der RNAPII bereits seit längerer Zeit beschrieben sind, ist eine besondere Form der RNAPII-abhängigen Regulation erst in den letzten Jahren Gegenstand genauerer Untersuchungen geworden. So erfährt die RNAPII bei einer Vielzahl von Genen unmittelbar nach der Transkriptionsinitiation einen Arrest, der das Enzym nicht weiter über die DNA prozessieren lässt und somit die produktive Elongation des Gens blockiert. Die Aufhebung dieses promotornahen Arrests wird durch den positiven Transkriptions-Elongationsfaktor b (P-TEFb) dominiert, der durch distinkte post-translationale Modifikationen der C-terminalen Domäne der RNAPII und assoziierter Faktoren den Übergang in die produktive Transkriptionselongation ermöglicht. P-TEFb selbst unterliegt dabei einer strengen Regulation durch die Inkorporation in inhibierende Speicherkomplexe (7SK snRNPs), bestehend aus der 7SK snRNA und mehrerer assoziierter Proteine. Abseits des 7SK snRNP wurde P-TEFb als Bestandteil großer Multiproteinkomplexe identifiziert, die einen positiven Einfluss auf die Transkriptionselongation besitzen. Die Transition von P-TEFb aus dem 7SK snRNP in diese sogenannten Superelongationskomplexe (SECs) stellt einen der zentralen Regulationsmechanismen der eukaryotischen Transkription dar, ist jedoch noch nicht ausreichend verstanden. 
Ein zentrales Element aller SECs bilden die Mitglieder der AF4/FMR2-Proteinfamilie, darunter das AF4 Protein, dem neben der Erhaltung der strukturellen Integrität mittlerweile auch eine Funktion in der Rekrutierung von P-TEFb zugeschrieben wird. Dabei scheint AF4 jedoch auf die Hilfe bislang noch nicht charakterisierter Faktoren angewiesen zu sein. AF4 ist über diese Rolle hinaus als Bestandteil des Fusionsproteins AF4-MLL eng mit der onkogenen Zelltransformation im Falle einer durch die Translokation t(4;11)(q21;q23) bedingten, akuten lymphoblastischen Leukämie assoziiert.
Das zentrale Thema dieser Arbeit stellen Untersuchungen zum Transfer von P-TEFb aus dem 7SK snRNP zum AF4-Protein dar. Dabei konnte zunächst die DEAD-Box RNA-Helikase DDX6 als Integraler Bestandteil der AF4-SECs identifiziert werden, der bereits eine Funktion in der Kontrolle des microRNA- wie auch des mRNA-Metabolismus zugeschrieben werden konnte. Aus diesem Grund wurde von uns eine mögliche Beteiligung von DDX6 an der Rekrutierung von P-TEFb zum AF4-SEC durch Modulationen der 7SK snRNA postuliert. Des Weiteren konnte eine Bindefähigkeit von DDX6 gegenüber der 7SK snRNA sowie eine direkte Korrelation zwischen des zellulären DDX6-Proteinlevel und der Akkumulation von P-TEFb im AF4-SEC nachgewiesen werden. Sowohl die Überexpression von DDX6 als auch die von AF4 resultierten in einer gesteigerten mRNA-Produktion, wobei die Ergebnisse auf einen kooperativen Mechanismus zwischen den beiden Proteinen in der Aktivierung der Transkription hindeuteten. Außerdem konnte die These einer DDX6-vermittelten Aktivierung von P-TEFb anhand von Expressionsanalysen des bekannten P-TEFb Zielgens HEXIM1, dessen Expression im Zusammenhang eines negativen Rückkopplungsmechanismus gesteigert wird, bestätigt werden. Damit konnte der DEAD-Box RNA-Helikase DDX6 in dieser Arbeit das erste Mal eine entscheidende Funktion in der Rekrutierung von P-TEFb aus dem 7SK snRNP in den AF4-SEC, und somit an der Kontrolle der eukaryotischen Transkription, zugeschrieben werden.  
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Fabian Mück
URN:urn:nbn:de:hebis:30:3-413214
Place of publication:Frankfurt am Main
Referee:Rolf Marschalek, Robert Fürst
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2016/07/20
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/07/07
Release Date:2016/07/20
Tag:AF4; DDX6; P-TEFb; RNAPII
Pagenumber:180
HeBIS PPN:384811604
Institutes:Pharmazie
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $