Ultrafast energy transfer processes in functional organic materials : quantum dynamical treatment including noise and disorder

Photoinduzierte Energietransferprozesse und -reaktionen spielen in vielen Gebieten von Chemie, Physik und Biologie eine wichtige Rolle. Zu den prominentesten Beispielen zählen der Lichtsammelprozess in der Photosynthese 
Photoinduzierte Energietransferprozesse und -reaktionen spielen in vielen Gebieten von Chemie, Physik und Biologie eine wichtige Rolle. Zu den prominentesten Beispielen zählen der Lichtsammelprozess in der Photosynthese und der Anregungsenergietransfer in funktionellen Materialien. Der Fokus dieser Arbeit liegt auf letzterem Bereich, genauer auf organischer Elektronik und flexiblen Donor-Akzeptor-Bausteinen und Schaltern. Im Besonderen werden hier zwei verschiedene Typen von funktionellen organischen Systemen betrachtet: zum einen oligomere Fragmente organischer halbleitender Polymere wie Oligo-p-Phenylen-Vinylen (OPV) und Oligo-Thiophen (OT), welche als Bausteine für neuartige organische Solarzellen dienen, und zum anderen kleine funktionelle Donor-Akzeptor-Einheiten wie Dithienylethen-Bordipyrromethen (DTE-BODIPY). Letzteres wurde in Kooperation mit den experimentellen Gruppen von K. Rück-Braun (TU Berlin) und J. Wachtveitl (Goethe Universität) untersucht. Um die relevanten Energietransfermechanismen genauer zu verstehen, wurden an diesen Systemen elektronische Strukturrechnungen und quantendynamische Untersuchungen durchgeführt. Hierzu wurden mittels ab initio-Methoden Modell-Hamiltonians parametrisiert und mit hochdimensionalen quantendynamischen oder semiklassischen Methoden kombiniert. Während die Parametrisierung für kleinere Fragmente durchgeführt wurde, lässt sich der so parametrisierte Hamiltonian ohne Weiteres auf größere Systeme erweitern. Die dynamischen Studien der betreffenden Systeme wurden mittels der Multikonfigurationellen Zeitabhängigen Hartree (MCTDH) Methode durchgeführt, welche eine vollständige quantendynamische Beschreibung des Systems zulässt. Für größere Systeme wurde die semiklassische Ehrenfest Methode in Verbindung mit dem Langevin-Ansatz zur Beschreibung von Umgebungseffekten genutzt. Hierzu wurde ein eigens für diese Methode und Systeme geschriebenes Programm eingesetzt. Im Falle der OT- und OPV-Oligomere wurde die Dynamik bei Vorliegen eines strukturellen Defekts untersucht. Ziel war es hierbei, die dynamischen Phänomene, welche durch die Photoanregung induziert werden, zu untersuchen. Des Weiteren wurde untersucht, ob das Konzept von „spektroskopischen Einheiten“, welche die Lokalisierung der Anregung durch strukturelle Defekte beschreibt, in diesen Systemen zutrifft. Hierzu wurden die Systeme in einer Frenkel-Basis definiert, welche ein auf einem Monomer lokalisiertes Elektron-Loch-Paar beschreibt. Delokalisierte elektronische Anregungen können somit als Superposition solcher Frenkel-Zustände beschrieben werden. Neben der Frenkel-Basis wurde aber auch eine verallgemeinerte Elektron-Loch-Basis verwendet, welche über zusätzliche Ladungstransferzustände eine räumliche Separation von Elektronen und Löchern erlaubt.Die Parametrisierung des OPV- und OT-Hamiltonians erfolgte mittels der Algebraischen Diagrammatischen Konstruktions (ADC(2))-Methode, welche in Kombination mit einer Übergangs-Dichte-Matrix-Analyse eine sehr akkurate Beschreibung der Frenkel- und Ladungstransferzustände basierend auf den supermolekularen Zuständen erlaubt. Um vibronische Effekte auf die Dynamik miteinzubeziehen,wurden nieder- und hochfrequente Torsions- und alternierende Bindungslängenmoden des Systems im Hamiltonian berücksichtigt. Hierzu wurden eindimensionale Schnitte der Potentialflächen entlang dieser Koordinaten berechnet und mittels einer Transformation in diabatische Potentialflächen überführt. Mit diesem Setup wurden die quantendynamischen und semiklassischen Simulationen für ein OPV/OT-Hexamer und ein 20-mer durchgeführt. Die Ergebnisse dieser Simulationen zeigen, dass der Energietransfer auf einer Subpikosekunden-Zeitskala stattfindet und eine starke Abhängigkeit vom Vorliegen eines strukturellen Defekts aufweist. Des Weiteren konnte auf einer Zeitskala von 100 Femtosekunden eine Lokalisierung des Exzitons beobachtet werden. Fluktuationseffekte werden zudem über Quantenfluktuationen im Falle von MCTDH bzw. über thermische Fluktuationen im Falle des Ehrenfest-/Langevin-Ansatzes berücksichtigt. Letzterer ist jedoch nicht in der Lage, die kohärente Charakteristik der mit den Schwingungsmoden gekoppelten Exziton- und Lokalisierungsdynamik wiederzugeben. Dagegen kann dieser Ansatz erfolgreich genutzt werden, um eine fluktuationsgetriebene „Hopping“-Dynamik des quasi- stationären Zustandes auf einer längeren Zeitskala in Abhängigkeit von der Temperatur zu beschreiben. Die Beschreibung der Photodynamik der DTE-BODIPY-Dyade zielt darauf ab, experimentell beobachtete vibrationelle Schwingungen des BODIPY-Fragments zu erklären, die ohne eine direkte Anregung dieses Fragments zustande kommen. Diese wurden nach einer selektiven Anregung des DTE-Fragments in zeitaufgelösten UV/Vis Anreg-Abtast-Experimenten beobachtet. Der Fokus der Untersuchung liegt daher auf der Beschreibung der photoinduzierten intramolekulare Energieumverteilung (IVR) auf einer Subpikosekunden-Zeitskala. Die DTE-BODIPY Dyade wurde mittels eines Hamiltonians, welcher durch TDDFT Rechnungen parametrisiert wurde, dargestellt. Basierend auf den Normalmoden des Systems, wurden lokale DTE- und BODIPY-Moden konstruiert, wobei einige dieser Moden miteinander gekoppelt sind und die Photoanregung des DTE auf das BODIPY-Fragment übertragen. Hierbei zeigte sich, dass die Zeitskala und die charakteristischen Frequenzen des Experiments mittels der hochdimensionalen MCTDH-Methode gut reproduziert wurden. Aus den Simulationen ergab sich zudem, dass der beobachtete Energietransfer stark von einem Reservoir von vibrationell angeregten lokalen DTE-Moden beeinflusst wird. Der untersuchte IVR- Prozess zeigt zudem eine ausgeprägte Abhängigkeit von lokalen Kopplungen und der Kopplung an eine Umgebung.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Jan Michael Wahl
URN:urn:nbn:de:hebis:30:3-414448
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Irene Burghardt, Josef Wachtveitl
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/08/25
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/08/23
Release Date:2016/08/26
Pagenumber:185
HeBIS PPN:386135096
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $