Structural analysis of antigenic peptides bound to the antigen translocation complex TAP

  • The transporter associated with antigen processing (TAP) is a heterodimeric ATP-binding cassette (ABC) transport complex, which selects peptides for export into the endoplasmic reticulum (ER) and subsequent loading onto major histocompatibility complex class I (MHC I) molecules to trigger adaptive immune responses against virally or malignantly transformed cells. Due to its pivotal role in adaptive immunity, TAP is a target for infectious diseases and malignant disorders, such as bare lymphocyte syndrome type I and cancer. A detailed knowledge about the TAP structure and transport mechanism is fundamental for the development of therapies or drugs against such diseases, but numerous aspects are insufficiently determined to date. The aim of this PhD thesis was to elucidate several structural details of TAP using powerful biochemical and biophysical methods and thereby to contribute to the understanding of the translocation machinery functionality. High protein yields, an efficient isolation from the lipid environment and subsequent purification of a stoichiometric, stable, and functional TAP complex are prerequisites to get detailed insights into TAP functionality. The natural product digitonin is typically used as detergent to isolate TAP, but suffered from fluctuating purity and high costs. The novel detergent GDN was selected from a number of potential detergents upon their ability to isolate and purify TAP overcoming the limitations of digitonin without compromising on functional integrity. State-of-the-art biophysical techniques, such as solid-state nuclear magnetic resonance (NMR), require highly concentrated protein samples. A new and mild procedure to concentrate TAP was established within this thesis. Freeze drying is superior to conventional concentration techniques, such as ultrafiltration, resulting in TAP inactivation and aggregation already at concentrations of 10 mg/mL. This new procedure enables stabilizing TAP in a condensed glycerol matrix and to concentrate the transport complex up to 30 mg/mL active transporter. The functional integrity of the freeze-dried TAP complex was verified by determining equilibrium dissociation constants, peptide dissociation and ATP-hydrolysis rates as well as long-term stabilities identical to untreated TAP. The combined application of the detergent GDN and the freeze drying procedure facilitates the cost-efficient isolation of functional and highly concentrated TAP and enables to study the structure and mechanism of the peptide transporter TAP using modern analyses methods. Information on peptide-TAP interactions at atomic level have not been obtained so far. This lack of knowledge hampered the mechanistic understanding of the initial steps of substrate translocation catalyzed by TAP. Dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) solid-state NMR on highly concentrated TAP samples prepared with the freeze-drying procedure was used within this thesis to study this challenging membrane protein-substrate complex. The affinity and specificity of peptide binding by TAP are mediated by multiple recognition sites in the N- and C-terminal regions. Side-chains of positions 1, 3, and 9 are most substantially affected upon binding to TAP, revealing recognition principles of the translocation machinery. The nonamer peptide binds to TAP in an extended conformation with an N-to-C terminus distance of ~2.5 nm. Molecular docking revealed that the peptide substrate is locked with its N and C termini between TAP1 and TAP2 and adopts a tilted pose with respect to the membrane plane. The identified contact sites of TAP are consistent with results from earlier crosslinking and mutational analyses on the TAP complex. The inadequate structure determination and insufficient knowledge about the dynamics of substrate translocation impedes a detailed comprehension of the TAP transport mechanism. Advanced biophysical methods, such as pulsed electron paramagnetic resonance (EPR) or single-molecule Förster resonance energy transfer (FRET), enable to locate the peptide-binding pocket and to elucidate dwell-times, conformational states and dynamics within the translocation cycle of TAP. The specific introduction of spin or fluorescent labels via single cysteines for such studies requires a cysteine-less TAP complex. The endogenous cysteine 213 in TAP2 remained to create a pseudo Cys-less TAP complex within this thesis due to its altered substrate repertoire when mutated to serine as shown in previous studies. Latter complex was used to introduce single-Cys mutations in the cytosolic extensions of transmembrane helices of TAP1. Their functional integrity with respect to peptide binding and translocation was comparable to pseudo Cys-less TAP. All pseudo single cysteines were efficiently labeled, but unintentionally C213TAP2 was labeled as well and TAP concomitantly inactivated. These unsatisfactory initial experiments required the generation of a functional, entirely Cys-less TAP transporter within this thesis. Therefore, C213TAP2 was replaced by all 19 proteinogenic amino acids. All analyzed mutants were capable to bind a high-affinity peptide of TAP, but with varying affinities and binding capacities. The replacement of C213 by isoleucine enabled the generation of a cysteine-less TAP complex with functional characteristics similar to the wild-type transporter and will promote the elucidation of the translocation mechanism of the peptide transporter TAP in future studies using pulsed EPR and single-molecule FRET.
  • Das menschliche Immunsystem ist ein aktuelles und fortwährendes Forschungsgebiet. Eine detaillierte Kenntnis über die im Immunsystem ablaufenden Vorgänge gestattet die Entwicklung neuer und die Verbesserung bestehender Strategien zur Bekämpfung von Krankheiten. Das Immunsystem dient dabei als vielschichtiges Verteidigungssystem und verteidigt den menschlichen Körper gegen den Angriff von Krankheitserregern, wie Bakterien, Viren, Pilzen und Parasiten. Physikalische und chemische Barrieren, wie Haut oder Magensaft, bilden die primären Schutzschilder und verhindern das Eindringen von Erregern in den Organismus. Das angeborene Immunsystem attackiert diejenigen Erreger, denen es gelingt die primären Schutzbarrieren zu überwinden. Die adaptive Immunantwort wird dann nachgeschaltet aktiviert, falls das angeborene Immunsystem bei der Bekämpfung der in den Körper eingedrungenen Erreger versagt. Diese zelluläre Immunantwort beruht auf einer direkten Interaktion von T-Lymphozyten mit Antigenen, welche mit Hilfe von MHC (major histocompatibility complex) Molekülen an der Zelloberfläche präsentiert werden. T-Zellen sind für die Unterscheidung körpereigener und -fremder Antigene verantwortlich und lösen die Apoptose (programmierter Zelltod) Virus infizierter Zellen und Tumorzellen aus...

Download full text files

  • Elisa_Lehnert_Dissertation.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Elisa Lehnert
URN:urn:nbn:de:hebis:30:3-431427
Referee:Robert TampéORCiDGND, Clemens GlaubitzORCiDGND
Advisor:Robert Tampé, Rupert Abele, Clemens Glaubitz
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/11/15
Release Date:2017/04/06
Page Number:145
HeBIS-PPN:406551464
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG