Synthese ausgedehnter pi-konjugierter Organoborane

  • In der organischen Elektronik werden Moleküle mit konjugierten pi-Elektronensystemen als Halbleiter und Lichtemitter eingesetzt. Für die Fabrikation fortschrittlicher elektronischer Bauelemente, wie z. B.organischer Leuchtdioden, werden Materialien mit besonderen optoelektronischen Eigenschaften benötigt.Die Stoffklasse der Arylamine ist für den Transport positiver Ladungen etabliert, da die exozyklischen Stickstoffatome Elektronenlöcher mesomer zu stabilisieren vermögen. Komplementär dazu sind auch Materialien für den Transport negativer Ladungen in der organischen Elektronik unverzichtbar. Zu diesem Zweck sollten borhaltige Verbindungen ideal geeignet sein, da das Element Bor weniger Valenzelektronen als Kohlenstoff besitzt und Arylborane daher im Vergleich zu den entsprechenden Kohlenwasserstoffen eine geringere Elektronendichte aufweisen. Als Halbleitermaterialien sind Arylborane jedoch nicht so weit verbreitet wie Arylamine, da die Instabilität vieler Vertreter gegenüber Luft und Feuchtigkeit sowie der Mangel an effizienten Synthesemethoden ihre Anwendung verzögert haben. Um geeignete organische Elektronenleiter bereitzustellen, ist die Entwicklung stabiler, pi-konjugierter Borane erstrebenswert. Ansatzpunkte für diese Arbeit waren Erkenntnisse aus der vorangegangenen Masterarbeit, sowie Beispiele für hydrolysestabile Arylborane, welche in der jüngeren Vergangenheit von M. Wagner et al. Und S. Yamaguchi et al. veröffentlicht wurden. Im Rahmen der vorliegenden Arbeit gelang die Entwicklung einer modularen Synthesestrategie, die einen vielseitigen Zugang zur Stoffklasse der borhaltigen polyzyklischen aromatischen Kohlenwasserstoffe (PAKs) ermöglicht: Ausgehend von einem gut verfügbaren siliziumhaltigen Startmaterial und diversen, zum Großteil kommerziell erhältlichen, Carbonylverbindungen wurden mehr als zwanzig verschiedene Triarylborane dargestellt. Dabei wurde eine Auswahl spezieller Reaktionstypen nach den jeweiligen Erfordernissen in geeigneter Weise miteinander kombiniert. Zu diesen gehörte die Peterson-Olefinierung zum Aufbau drei- und vierfach substituierter Alkene, die Photozyklisierung der resultierenden Stilben-artigen Verbindungen, eine Ru(II)-katalysierte Reaktion zur Benzanellierung und der Silizium/Bor Austausch mittels BBr3. An wichtigen Zwischenprodukten wurden Reaktivitätsstudien durchgeführt, um die Anwendungsmöglichkeiten und Einschränkungen dieser Synthesestrategie zu ergründen. Um die Stabilität der Produkte gegenüber Luft und Feuchtigkeit zu gewährleisten, wurden die reaktiven Borzentren in bewährter Weise durch Einführung eines sterisch anspruchsvollen Mesitylsubstituenten kinetisch abgeschirmt. Die überwiegende Zahl der synthetisierten borhaltigen PAKs erwies sich als absolut unempfindlich gegenüber Wasser und konnte mit den gängigen Methoden der organischen Chemie (z. B. Säulenchromatographie an Kieselgel) gereinigt werden. Als Alternative zur sterischen Abschirmung wurde der Einbau des Boratoms in ein starres Molekülgerüst an einem Ausführungsbeispiel verwirklicht. Diese zweite Möglichkeit der Stabilisierung stellte sich in Bezug auf die Eigenschaften des Produkts als vergleichbar heraus, erforderte aber einen größeren synthetischen Aufwand und lieferte eine geringere Ausbeute über die gesamte Reaktionssequenz. Die in dieser Arbeit dargestellten borhaltigen PAKs wurden mittels Röntgenkristallographie umfassend strukturell charakterisiert. Die intensiv genutzten Methoden Cyclovoltammetrie, UV/vis- und Fluoreszenzspektroskopie gewährten zusätzlich einen detaillierten Einblick in ihre elektronischen Strukturen. Die Synthese und systematische Variation der Moleküle führten zu neuen Erkenntnissen über grundlegende Struktur-Eigenschafts-Beziehungen. Insbesondere zeigten diese Vergleiche, dass in ladungsneutralen Triarylboranen keine Delokalisation der pi-Elektronen über das leere p-Orbital eines Boratoms stattfindet. Von entscheidender Bedeutung für die elektronische Struktur borhaltiger PAKs ist das Gerüst aus sp2-hybridisierten Kohlenstoffatomen: Wenn mindestens zwei der Arylsubstituenten am Boratom zu einem gemeinsamen Gefüge verbrückt sind, zeigen diese Verbindungen elektronische Übergänge im sichtbaren Bereich des elektromagnetischen Spektrums und in den meisten Fällen auch eine intensive Fluoreszenz. Des Weiteren besitzen diese borhaltigen PAKs eine hohe Elektronenaffinität und lassen sich elektrochemisch reversibel reduzieren. Damit erfüllen sie bedeutende Kriterien für eine mögliche Anwendung als Elektronenleiter. Von den Molekülen mit ausgedehntem pi-Elektronensystem ließen sich manche zusätzlich reversibel oxidieren und zeichnen sich daher durch eine außergewöhnlich hohe elektrochemische Stabilität aus. An Arylboranen, deren Farbe sich durch externe Stimuli verändern lässt, wurden grundlegende Untersuchungen im Kontext der molekularen Sensorik durchgeführt. Einige der synthetisierten Verbindungen ändern ihr Absorptions- und Emissionsspektrum bei Kontakt mit Fluorid-Ionen, bei Oxidation integrierter Schwefelatome durch ein Carbonsäureperoxid, bei elektrochemischer Reduktion oder in Abhängigkeit der Polarität ihrer Umgebung. Die Ergebnisse dieser Arbeit wurden in vier Fachartikeln beschrieben und veröffentlicht (siehe Anhang). Sie können zu einem besseren Verständnis der elektronischen Eigenschaften borhaltiger PAKs beitragen und die Entwicklung neuer Halbleitermaterialien auf der Basis dieser Stoffklasse erleichtern.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Valentin Maximilian HertzGND
URN:urn:nbn:de:hebis:30:3-443168
Place of publication:Frankfurt am Main
Referee:Matthias WagnerORCiD, Max C. HolthausenORCiD
Advisor:Matthias Wagner
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/06/20
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/19
Release Date:2017/06/20
Page Number:311
HeBIS-PPN:404480624
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht