Evolution of the terrestrial invasion in Panpulmonata (Mollusca, Gastropoda): molecular adaptations in the context of realm transitions

  • The transition from the marine to the terrestrial realm is one of the most fascinating issues in evolutionary biology for it required the appearance, in different organisms, of several novel adaptations to deal with the demands of the new realm. Adaptations include, for instance, modifications in different metabolic pathways, development of body structures to facilitate movement and respiration, or tolerance to new conditions of stress. The transition to the land also gives an extraordinary opportunity to study whether evolution used similar changes at the genomic level to produce parallel adaptations in different taxa. Mollusks are among taxa that were successful in the conquest of the land. For instance, several lineages of the molluscan clade Panpulmonata (Gastropoda, Heterobranchia) invaded the intertidal, freshwater and land zones from the marine realm. In my dissertation, using tools from bioinformatics, phylogenetics, and molecular evolution, I used panpulmonates as a suitable model group to study the independent invasions into the terrestrial realm and the adaptive signatures in genes that may have favored the realm transitions. My work includes two peer-reviewed published papers and one manuscript under review. In Publication 1 (Romero et al., 2016a), I used mitochondrial and nuclear molecular markers to resolve the phylogeny of the Ellobiidae, a family that possesses intertidal and terrestrial species. The phylogeny provided an improved resolution of the relationships within inner clades and a framework to study the tempo and mode of the land transitions. I showed that the terrestrialization events occurred independently, in different lineages (Carychiinae, Pythiinae) and in different geological periods (Mesozoic, Cenozoic). In addition, the diversification in this group may not have been affected by past geological or climate changes as the Cretaceous-Paleogene (K-Pg) event or the sea-level decrease during the Oligocene. In Publication 2 (Romero et al., 2016b), I generated new mitochondrial genomes from terrestrial species and compared them with other panpulmonates. I used the branch-site test of positive selection and detected significant nonsynonymous changes in the terrestrial lineages from Ellobioidea and Stylommatophora. Two genes appeared under positive selection: cob (Cytochrome b) and nad5 (NADH dehydrogenase 5). Surprisingly, I found that the same amino acid positions in the proteins encoded by these genes were also under positive selection in several vertebrate lineages that transitioned between different habitats (whales, bats and subterranean rodents). This result suggested an adaptation pattern that required parallel genetic modifications to cope with novel metabolic demands in the new realms. In Manuscript 1 (Romero et al., under review), I de novo assembled transcriptomes from several panpulmonate specimens resulting in thousands of genes that were clustered in 702 orthologous groups. Again, I applied the branch-site test of positive selection in the terrestrial lineages from Ellobioidea and Stylommatophora and in the freshwater lineages from Hygrophila and Acochlidia. Different sets of genes appeared under positive selection in land and freshwater snails, supporting independent adaptation events. I identified adaptive signatures in genes involved in gas-exchange surface development and energy metabolism in land snails, and genes involved in the response to abiotic stress factors (radiation, desiccation, xenobiotics) in freshwater snails. My work provided evidence that supported multiple land invasions within Panpulmonata and provided new insights towards understanding the genomic basis of the adaptation during sea-to-land transitions. The results of my work are the first reports on the adaptive signatures at the codon level in genes that may have facilitated metabolic and developmental changes during the terrestrialization in the phylum Mollusca. Moreover, they contribute to the current debate on the conquest of land from the marine habitat, a discussion that has been only based in vertebrate taxa. Future comparative genome-wide analyses would increase the number of genes that may have played a key role during the realm transitions.

Download full text files

Export metadata

Metadaten
Author:Pedro Romero
URN:urn:nbn:de:hebis:30:3-443591
Place of publication:Frankfurt am Main
Referee:Markus PfenningerORCiDGND, Imke SchmittORCiDGND
Advisor:Markus Pfenninger
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/05
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/05/10
Release Date:2017/07/05
Page Number:113
HeBIS-PPN:404948251
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht