Pulsed EPR dipolar spectroscopy with novel paramagnetic tags

  • Gepulste dipolare EPR-Spektroskopie ist eine wertvolle Methode, um Abstände von 1.5 bis 10 nm zwischen zwei Spinmarkern zu messen. Diese Information kann für Strukturbestimmungen hilfreich sein, wo traditionelle Methoden wie Kristallstrukturanalyse und NMR nicht angewendet werden können. Zusätzlich ist es möglich, Änderungen in Konformation und Flexibilität zu verfolgen. Für diese Studien haben sich stabile Nitroxidradikale als Spinmarker etabliert. Diese werden spezifisch durch die site-directed spin labelling Methode (SDSL) kovalent an das zu untersuchende Biomolekül gebunden. In den letzten Jahren wurden weitere Spinmarker für Abstandsbestimmungen mittels EPR-Spektroskopie entwickelt. Besonders interessant sind Triarylmethylradikale (im Folgenden abgekürzt als Trityl) und paramagnetische Metallzentren. Im Vergleich zu Nitroxidradikalen hat das Tritylradikal einige Vorteile: Eine höhere Stabilität in einer reduzierenden Umgebung wie im Inneren von Zellen, längere Elektronenspin-Relaxationszeiten bei Raumtemperatur und ein schmaleres EPR-Spektrum. Deswegen ist dieses organische Radikal ein alternativer Spinmarker, der besonders gut für die Forschung von Biomolekülen in einer nativen Umgebung unter physiologischen Bedingungen geeignet ist. Auch paramagnetische Metallzentren sind weniger reduktionsempfindlich als Nitroxidradikale. Zusätzlich sind diese Spinmarker interessant in biologischen Fragestellungen. Zum Beispiel besitzen zahlreiche Enzyme paramagnetische Manganzentren als Cofaktoren. Zudem kann Magnesium, ein wesentlicher Cofaktor in Enzymen, Nukleinsäuren und Nukleotid-Bindungsdomänen der G- und Membranproteine, oft durch das paramagnetische Mangan ersetzt werden. Um Abstandsmessungen an Biomolekülen, die nur ein Metallzentrum besitzen, durchzuführen, können zusätzliche Spinmarker in Form eines Nitroxid-, Tritylradikals oder eines anderen paramagnetischen Metallkomplexes mithilfe der SDSL-Methode kovalent gebunden werden. Nitroxidradikale, Tritylradikale und Metallzentren haben deutlich unterschiedliche EPR-spektroskopische Eigenschaften, welche oft als orthogonale Spinmarker bezeichnet werden. Solche Spinmarker sind nützlich für die Untersuchung von verschiedenen Untereinheiten bei makromolekularen Komplexen. Somit können die intramolekularen Abstände innerhalb einer Untereinheit sowie intermolekularen Abstände zwischen den unterschiedlichen Untereinheiten mit nur einer einzigen Probe bestimmt werden. Zusätzlich können die orthogonalen Marker sehr effektiv genutzt werden, um Metallzentren in Biomolekülen mithilfe der Trilateration-Strategie genau zu lokalisieren. Die hier vorliegende Doktorarbeit beschäftigt sich mit der Nutzung dieser neuen Spinmarker für Abstandsmessungen. Solche Spinmarker sind noch kaum erforscht, obwohl sie für biologische Anwendungen eine große Rolle spielen könnten. Das erste Ziel dieser Doktorarbeit war eine Studie über Tritylradikale mithilfe der dipolaren EPR-Spektroskopie. Zu diesem Zweck wurden sowohl double quantum coherence (DQC) und single frequency technique for refocussing dipolar couplings (SIFTER) Experimente als auch Hochfrequenz pulsed electron electron double resonance (PELDOR) Experimente mit einem Trityl-Modellsystem durchgeführt. Dabei wurden die Besonderheiten der unterschiedlichen dipolaren Spektroskopiemethoden mit diesem Spinmarker untersucht, um die Empfindlichkeit und Robustheit für die Abstandsmessungen zu optimieren. Das zweite Ziel war eine Studie über den Einfluss der Hochspin-Multiplizität des Mangans auf die Abstandsbestimmungen. Für diesen Zweck wurde zuerst ein Modellsystem mit einem orthogonalen Mn2+ Ion und Nitroxidradikal mithilfe der PELDOR-Spektroskopie untersucht. Anschließend wurde ein weiteres Modellsystem mit zwei Mn2+-Ionen untersucht, um PELDOR und relaxation-induced dipolar modulation enhancement (RIDME) Experimente bezüglich ihrer Empfindlichkeit und Robustheit sowie Genauigkeit der Datenanalyse zu optimieren. Das Trityl-Modellsystem wurde in der Arbeitsgruppe von Prof. Sigurdsson synthetisiert. Die EPR Messungen wurden bei zwei verschiedenen Mikrowellenfrequenzen (34 und 180 GHz) durchgeführt. Es wurde gezeigt, dass die Auswahl der optimalen Methode von den EPR-spektroskopischen Eigenschaften des Systems bei den jeweiligen Mikrowellenfrequenzen abhängig ist. Das EPR-Spektrum des Trityls ist bei 34 GHz so schmal, dass das ganze Spektrum von einem üblichen Mikrowellenpuls angeregt werden kann. In diesem Fall sind die DQC und SIFTER Experimente am besten geeignet. Der mit diesen Methoden bestimmte Abstand von 4.9 nm ist in guter Übereinstimmung mit Werten aus der Literatur. Es wurde festgestellt, dass die SIFTER Messung eine höhere Empfindlichkeit als DQC besitzt, da das Signal-zu-Rausch Verhältnis um den Faktor vier größer ist. Außerdem ist die SIFTER-Methode experimentell weniger anspruchsvoll, da ein deutlich kürzerer Phasenzyklus für die Mikrowellenpulse benötigt wird. ...

Download full text files

Export metadata

Metadaten
Author:Dmitry Akhmetzyanov
URN:urn:nbn:de:hebis:30:3-444090
Place of publication:Frankfurt am Main
Referee:Thomas PrisnerORCiD, Björn Corzilius, Olav Schiemann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/18
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/16
Release Date:2017/07/20
Page Number:205
HeBIS-PPN:406212686
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht