Four-dimensional event reconstruction in the CBM experiment

  • The future heavy-ion experiment CBM (FAIR/GSI, Darmstadt, Germany) will focus on the measurements of very rare probes, which require the experiment to operate under extreme interaction rates of up to 10 MHz. Due to high multiplicity of charged particles in heavy-ion collisions, this will lead to the data rates of up to 1 TB/s. In order to meet the modern achievable archival rate, this data ow has to be reduced online by more than two orders of magnitude. The rare observables are featured with complicated trigger signatures and require full event topology reconstruction to be performed online. The huge data rates together with the absence of simple hardware triggers make traditional latency limited trigger architectures typical for conventional experiments inapplicable for the case of CBM. Instead, CBM will employ a novel data acquisition concept with autonomous, self-triggered front-end electronics. While in conventional experiments with event-by-event processing the association of detector hits with corresponding physical event is known a priori, it is not true for the CBM experiment, where the reconstruction algorithms should be modified in order to process non-event-associated data. At the highest interaction rates the time difference between hits belonging to the same collision will be larger than the average time difference between two consecutive collisions. Thus, events will overlap in time. Due to a possible overlap of events one needs to analyze time-slices rather than isolated events. The time-stamped data will be shipped and collected into a readout buffer in a form of a time-slice of a certain length. The time-slice data will be delivered to a large computer farm, where the archival decision will be obtained after performing online reconstruction. In this case association of hit information with physical events must be performed in software and requires full online event reconstruction not only in space, but also in time, so-called 4-dimensional (4D) track reconstruction. Within the scope of this work the 4D track finder algorithm for online reconstruction has been developed. The 4D CA track finder is able to reproduce performance and speed of the traditional event-based algorithm. The 4D CA track finder is both vectorized (using SIMD instructions) and parallelized (between CPU cores). The algorithm shows strong scalability on many-core systems. The speed-up factor of 10.1 has been achieved on a CPU with 10 hyper-threaded physical cores. The 4D CA track finder algorithm is ready for the time-slice-based reconstruction in the CBM experiment.

Download full text files

Export metadata

Metadaten
Author:Valentina AkishinaGND
URN:urn:nbn:de:hebis:30:3-444132
Place of publication:Frankfurt am Main
Referee:Ivan KiselORCiDGND, Volker LindenstruthORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/24
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/30
Release Date:2017/08/03
Tag:Cellular Automaton; High energy physics; Many-core computer architectures; Parallel and SIMD calculations
Page Number:181
HeBIS-PPN:415362725
Institutes:Informatik und Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht