Effect-based assessment of biological wastewater treatment processes targeting organic micropollutant removal

  • Surface water can contain a complex mixture of organic micropollutants (i.e. residues of pharmaceuticals or biocides). Conventional wastewater treatment plants (WWTPs) do not completely remove a broad range of anthropogenic chemicals and therefore represent a leading point source. To upgrade WWTPs, technical solutions based on oxidative and sorptive processes have been developed and successfully implemented. Acknowledging these substantial advances, this thesis focuses on another key topic and aims to investigate whether improved biological treatment processes likewise effectively remove anthropogenic micropollutants from wastewater. The work conducted on this topic was part of two European research projects (ATHENE, ENDETECH). The ATHENE project aimed to go beyond the state-of-the-art by developing biological wastewater treatment processes that exploit the full potential of biodegradation. With the objective to explore the potential of complementary strictly anaerobic conditions within the biological wastewater treatment, combinations of aerobic and anaerobic treatments on site of a WWTP were implemented. Based on pre-experiments, two promising treatment combinations were selected for a more comprehensive evaluation. An aerobic treatment was paired with an anaerobic pre-treatment under iron-reducing conditions, and an activated sludge treatment was combined with an anaerobic post-treatment under substrate-limiting conditions. For the evaluation of these processes, an effect-based assessment was applied and combined with chemical data of 31 selected target organic micropollutants as well as ten metabolites. To assess the removal of endocrine disrupting chemicals (EDCs), yeast based reporter gene assays covering seven receptor-mediated mechanisms of action including (anti-)estrogenicity, (anti-) androgenicity, retinoid-like, and dioxin-like activity were conducted. Furthermore, the removal of unspecific toxicity (Microtox assay) and oxidative stress response as a marker for reactive toxicity (AREc32 assay) were analyzed to cover micropollutants acting via a non-specific mechanism of action. Moreover, to assess toxicity of the whole effluent in vivo, standardized in vivo bioassays with four aquatic model species (Desmodesmus subspicatus, Daphnia magna, Lumbriculus variegatus, Potamopyrgus antipodarum) were performed. The combination of aerobic and anaerobic treatments resulted in a low additional removal of the selected target organic micropollutants (by 14-17%). In contrast, the removal of endocrine and dioxin-like activities (by 17-75%) and non-specific in vitro toxicities (by 27-60%) was significantly enhanced. Compared to technical solutions (i.e. ozonation), the combination with an anaerobic pre-treatment under iron-reducing conditions was likewise effective in removing the estrogenic activity as well as the unspecific toxicity, whereas anti-androgenic activity and dioxin-like activity were less effectively removed. Exposure to effluents of the conventional activated sludge treatment did not induce adverse in vivo effects in the investigated aquatic model species. Accordingly, no further improvement in water quality could be observed. In conclusion, the combination of aerobic and anaerobic treatment processes significantly enhanced the removal of specific and non-specific in vitro toxicities. Thus, an optimization of the biological wastewater treatment can lead to a substantially improved detoxification. These capacities of a treatment technology can only be uncovered by complementary effect-based measurements. The global objective of the ENDETECH project was to develop a biotechnological solution to eliminate recalcitrant pharmaceuticals in wastewater direct from sites, where high loads are expected (i.e. hospitals). For this purpose, laccase, an enzyme mainly found in wood decaying fungi, was immobilized on ceramic membranes for application in bioreactors. In a proof of principle experiment, the performance of immobilized laccase in removing a mixture of 38 antibiotics without and in combination with a natural mediator (syringaldehyde; SYR) was investigated. For the evaluation of the enzymatic membrane bioreactors, chemical data on the elimination of the selected target antibiotics was combined with the outcomes of two in vitro bioassays. Growth inhibition tests with an antibiotic sensitive Bacillus subtilis strain were conducted to assess the residual antibiotic activity of the effluents, and Microtox assays were performed to detect a potential formation of toxic by-products. The treatment by laccase without SYR did not reduce the load of antibiotics significantly. In contrast, in combination with a SYR concentration of 10 µmol L-1, 26 out of 38 antibiotics were removed by >50% after 24 h treatment. Moreover, increasing the SYR concentration to 1000 µmol L-1 resulted in a further improvement of the antibiotic removal. 32 out of 38 antibiotics were removed by over 50%, whereby 17 were almost completely eliminated (>90%). However, the treatment with laccase in combination with SYR resulted in a time-dependent increase of unspecific toxicity. While SYR alone did not affect B. subtilis, the combination of laccase with SYR led to a strong time-dependent growth inhibition up to 100%. Similar to that, a time-dependent increase of unspecific toxicity in the Microtox assay was observed. In conclusion, the laccase-mediator process successfully degrades a broad spectrum of antibiotics and thus represents a promising technology to treat wastewater from sites, where high loads are expected. However, further research is required to reduce the formation of unspecific toxicity before an implementation of this technology can be considered.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Johannes VölkerORCiDGND
URN:urn:nbn:de:hebis:30:3-452777
Place of publication:Frankfurt am Main
Referee:Jörg OehlmannORCiDGND, Sven KlimpelORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/12/18
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/12/07
Release Date:2017/12/20
Page Number:VII, 134
HeBIS-PPN:424096633
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht