Reduced basis methods for nonlinear inverse problems

Diese Arbeit beschäftigt sich mit inversen Problemen für partielle Differentialgleichungen. Moderne Lösungsverfahren solcher inversen Probleme müssen die zugehörige partielle Differentialgleichung (PDGL) oft sehr häufig 
Diese Arbeit beschäftigt sich mit inversen Problemen für partielle Differentialgleichungen. Moderne Lösungsverfahren solcher inversen Probleme müssen die zugehörige partielle Differentialgleichung (PDGL) oft sehr häufig lösen. Mit Hinblick auf die Rechenzeit solcher Verfahren stellt das häufige Lösen der PDGL den Hauptanteil der benötigten Rechenzeit dar. Daraus resultiert die Grundidee dieser Arbeit: es sollen Lösungsverfahren von inversen Problemen beschleunigt werden, indem die für die Vorwärtslösung benötigte Rechenzeit verringert wird. Genauer gesagt soll anstatt der Vorwärtslösung eine Approximation an diese, welche kostengünstig zu berechnen ist, verwendet werden. Für die Bestimmung einer kostengünstigen Annäherung an die Vorwärtslösung wird die Reduzierte Basis Methode, eine Modellreduktionstechnik, verwendet.
Das Ziel der klassischen Reduzierten Basis Methode ist es einen globalen Reduzierte Basis Raum (RB-Raum) zu konstruieren. Dabei handelt es sich um einen niedrigdimensionalen Teilraum des Lösungsraumes der PDGL, welcher für jeden Parameter aus dem Parameterraum eine gute Näherung der PDGL-Lösung liefert. Eine beispielhafte Methode zur Konstruktion eines solchen Raumes ist es, geschickt Parameter auszuwählen und die dazu gehörigen PDGL-Lösungen als Basisvektoren des RB-Raumes zu verwenden. Die orthogonale Projektion der PDGL auf diesen RB-Raum liefert die entsprechenden Reduzierte Basis Lösungen. Das Besondere in dieser Arbeit ist, dass die betrachteten PDGLn einen sehr hochdimensionalen und unbeschränkten Parameterraum besitzen, und es ist bekannt, dass dies für die Reduzierte Basis Methode eine immense Schwierigkeit darstellt.
In Kapitel 1 wird ein schlechtgestelltes inverses Modellproblem, die Rekonstruktion der Wärmeleitfähigkeit eines Gegenstandes aus der Messung der Temperatur desselben, eingeführt und das nichtlineare Landweber-Verfahren als iteratives Regularisierungsverfahren zur Lösung dieses inversen Problems vorgestellt. Die Grundlagen der Reduzierten Basis Methode werden dargelegt und es wird erläutert, warum die klassische Variante der Methode in diesem Kontext der Bildrekonstruktion versagt. Daraufhin wird der neuartig Ansatz, ein adaptiver Reduzierte Basis Ansatz, entwickelt. Die folgenden Schritte bilden die Grundlage dieses adaptiven Reduzierte Basis Ansatzes:
1. Sei ein RB-Raum gegeben, so projiziere den Lösungsalgorithmus des inversen Problems auf diesen RB-Raum.
2. Generiere mit Hilfe dieses projizierten Verfahrens neue Iterierte bis entweder eine Iterierte das inverse Problem löst oder bis der RB-Raum erweitert werden muss.
3. Im ersten Fall wird das Verfahren beendet, im zweiten Fall wird die zur aktuellen Iterierten gehörige Vorwärtslösung verwendet um den RB-Raum zu verbessern. Danach wird mit dem ersten Schritt fortgefahren.
Es wird also nach und nach ein lokal approximierender RB-Raum konstruiert, indem Parameter für neue Basisvektoren mittels einer projizierten Variante des Lösungsalgorithmus des inversen Problems gefunden werden. Das neuartige Reduzierte Basis Landweber-Verfahren ist das Hauptresultat von Kapitel 1, wobei das Verfahren ausführlich numerisch untersucht und mit dem ursprünglichen Landweber-Verfahren verglichen wird.
In Kapitel 2 dieser Arbeit soll der zuvor entwickelte adaptive Reduzierte Basis Ansatz auf ein komplexes und praxisrelevantes Problem angewandt werden. Insbesondere soll die dadurch entstehende neue Methode mit Hinblick auf Konvergenz theoretisch ausführlich untersucht werden. Daher widmet sich der zweite Teil dieser Arbeit dem Problem der Magnet Resonanz Elektrischen Impedanztomographie (MREIT).
Bei der MREIT handelt es sich um ein Bildgebungsverfahren, welches während der letzten drei Jahrzehnte entwickelt wurde. Dabei wird ein Gegenstand, an welchen Elektroden angeheftet sind, in einen Kernspintomographen gelegt und es ist das Ziel des Verfahrens die elektrische Leitfähigkeit des Gegenstandes zu bestimmen. Die dazu benötigten Daten werden folgendermaßen gewonnen: indem Strom an einer der Elektroden angelegt wird, wird ein Stromfluss erzeugt, welcher wiederum eine Änderung der Magnetflussdichte induziert. Diese kann mit Hilfe des Kernspintomographen gemessen werden, wodurch man einen vollen Satz innerer Daten zur Hand hat, sodass hoch aufgelöste Bilder der elektrischen Leitfähigkeit des Gegenstandes rekonstruiert werden können.
Als Lösungsalgorithmus für dieses praxisrelevante Problem wird der bereits bekannte Harmonische Bz Algorithmus vorgestellt. Das Problem und der Algorithmus werden mit Hinblick auf Konvergenz des Verfahrens untersucht und ein Konvergenzresultat, welches die bestehende Konvergenztheorie hin zu einem approximativen Harmonischen Bz Algorithmus erweitert, wird bewiesen. Dabei hängt das Resultat nicht davon ab welche Art von Approximation an die Vorwärtslösung der entsprechenden PDGL im approximativen Harmonischen Bz Algorithmus verwendet wird solange diese einer Regularitäts- und einer Qualitätsbedingung genügt. Damit folgt das zweite Hauptresultat dieser Arbeit: die numerische Konvergenz des Harmonischen Bz Algorithmus. Es soll dabei hervorgehoben werden, dass Konvergenzresultate im Bereich der inversen Probleme (sofern es sie gibt) meistens die Kenntnis der exakten Vorwärtslösung annehmen, sodass keine numerische Konvergenz des zugehörigen Verfahrens folgt (in einer numerischen Implementation wird stets eine Approximation an die Vorwärtslösung verwendet). Somit ist dieses Konvergenzresultat ein Schritt hin zur numerischen Konvergenz anderer Lösungsverfahren von inversen Problemen.
Da das theoretische Resultat von der Art der Approximation nicht abhängt, erhält man ebenfalls die Konvergenz des neuartigen Reduzierte Basis Harmonischen Bz Algorithmus, welcher die Kombination des in Kapitel 1 entwickelten adaptiven Reduzierte Basis Ansatzes und des Harmonischen Bz Algorithmus ist. In einer kurzen numerischen Untersuchung wird festgestellt, dass dieser Reduzierte Basis Harmonische Bz Algorithmus schneller als der Harmonische Bz Algorithmus ist, wobei die Qualität der Rekonstruktion gleichbleibend ist. Somit funktioniert der entwickelte adaptive Reduzierte Basis Ansatz auch angewandt auf dieses komplexe praxisrelevante inverse Problem der MREIT.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Dominik Karl Garmatter
URN:urn:nbn:de:hebis:30:3-470293
Place of publication:Frankfurt am Main
Referee:Bastian von Harrach, Bernard Haasdonk, Jin Keun Seo
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/07/18
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/06/27
Release Date:2018/07/26
Pagenumber:V, 70
HeBIS PPN:434165123
Institutes:Informatik und Mathematik
Dewey Decimal Classification:004 Datenverarbeitung; Informatik
510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $