Volumenverschiebungen beim Sprung der Jagdspinne Cupiennius salei (Keyserling, 1877)

  • Durch Längenmessungen an Exuvien wurden die Größenverhältnisse von Beinlängen, Drehachsenlängen der Beingelenke und der Fläche des Carapax bei C. salei ermittelt. Für die hydraulisch gestreckten Femoro- Patellar- und Tibio-Metatarsalgelenke wurden die Volumen-Winkel-Kennlinien bestimmt. Das Sprungverhalten wurde durch Hochgeschwindigkeits-Videoaufnahmen (Bildfrequenz 500 Hz) mit drei Kameras dokumentiert. Aus den volumetrischen, kinematischen und morphometrischen Daten wurden die Volumenverschiebungen berechnet, die bei Sprungbewegungen auftreten. Aus der prosomalen Volumenverschiebung konnte der korrespondierende Carapaxhub berechnet werden. Mit einer Miniatur- Kraftmeßplattform und einem mit Schrittmotoren getriebenen "x-y-z-Tisch" wurden Steifigkeiten des Prosomas von Perania nasuta Schwendinger, 1989 und ausgewählten anderen Taxa bestimmt. Bei Cupiennius salei gibt es zwei unterschiedliche Sprungtypen: Unvorbereitete Sprünge als Reaktion auf sehr plötzliche Störungen zeichnen sich durch eine große Vielfalt der Bewegungsmuster aus. Vorbereitete Sprünge zeigen charakteristische Beinstellungen und Kontaktphasenmuster: Zunächst erfolgt eine etwa 20 ms dauernde Ausholbewegung, anschließend beginnt die 22 - 42 ms dauernde Beschleunigungsphase. Die Körperlängsachse vollzieht während der Beschleunigungsphase eine Vorwärtsrotation um etwa 50°, die nach dem Verlust des Bodenkontaktes der Beine gestoppt und umgekehrt wird. Dies erfolgt wohl durch ein kontrolliertes Bremsen des Ausstoßes des Sicherheitsfadens. Bei vorbereiteten Sprüngen konnten Sprungweiten bis zu 0.43 m beobachtet werden, die maximalen vertikalen Geschwindigkeiten betrugen 0.07 - 0.82 ms-1, maximale horizontale Geschwindigkeiten lagen bei 0.65 - 1.25 ms-1. Bei vorbereiteten Sprüngen wurden vertikale Beschleunigungen von 0.74 – 33.70 ms-2 und horizontale Beschleunigungen von 20.5 – 68.4 ms-2 erreicht. Die Kontaktphasen der Beine enden in einer charakteristischen Reihenfolge: Die Vorderbeine haben meist keinen Bodenkontakt, die dritten Beine heben nach durchschnittlich 37 % und die vierten Beine nach durchschnittlich 69 % der Dauer der Beschleunigungsphase ab. Zuletzt verlieren die zweiten Beine den Bodenkontakt. Zu Beginn der Beschleunigungsphasen richten sich innerhalb von durchschnittlich 4.6 ms Stacheln auf der Oberfläche der Beine auf. Die Stachelaufrichtung erfolgt bei Drucken von etwa 35 bis etwa 65 kPa. Dies zeigt einen Druckanstieg in den Beinen auf Werte von ³ 65 kPa während der Beschleunigungsphase an. Der Hauptanteil der Volumenverschiebungen in den Beinen wird durch Bewegungen der Femoro-Patellargelenke verursacht. Die Bewegungen der Tibio-Metatarsalgelenke bewirken nur geringe Volumenverschiebungen. Aufgrund der anatomischen Struktur der Trochantero- Femoralgelenke sind die bei Bewegung dieser Gelenke verschobenen Volumina vernachlässigbar klein. Die Abschätzung der zur Beinstreckung bei Sprüngen erforderlichen Carapaxverschiebungen ergab sehr geringe Werte, es sind nur Verschiebungen um wenige 1/100 bis 1/10 mm erforderlich. Für die vollständige Streckung aller Beine muß der Carapax nur um 10% der aufgrund der anatomischen Gegebenheiten maximal möglichen Strecke verschoben werden. Bei den Untersuchungen an Perania nasuta wurden prosomale Steifigkeiten von mehr als 3500 Nm-1 für Weibchen und mehr als 6500 Nm-1 für Männchen ermittelt. Das Prosoma von Perania nasuta ist sehr viel rigider als bei anderen Spinnen (Pholcus: 131 Nm-1, Zelotes: 79 Nm-1, Pardosa: 72 Nm-1, Dysdera: 1900 Nm-1). Die Carapaxverschiebung, die den zur vollständigen Beinstreckung erforderlichen Volumentransport bewirkte, würde bei Perania eine Verformungsarbeit von bis zu 27.56 myJ erfordern, bei den anderen Spinnen nur maximal 1.67 myJ (Dysdera). Das Sprungverhalten von Cupiennius salei läßt sich keinem der bislang beschriebenen Sprungtypen zuordnen. Hinsichtlich der Sprungweite und Geschwindigkeiten sind die Sprungleistungen von Cupiennius mit denjenigen von Salticiden vergleichbar. Die geringen Carapaxverschiebungen beim Sprung lassen sich im Sinne einer Optimierung der Arbeit extrinsischer coxaler Muskeln interpretieren. Eine Minimierung von Carapaxverschiebungen sollte die Koordinierbarkeit der Bewegungen der Coxae erhöhen, weil ein stärker formkonstanter Bezugsrahmen gegeben ist. Dementsprechend lassen sich Bein- und Carapaxdimensionen bei verschiedenen Spinnentaxa im Hinblick auf die jeweiligen Lokomotionsstrategien interpretieren. Die Untersuchungen an Perania nasuta bestätigen die von Kropf (in Vorb.) aufgestellte Hypothese einer starken Versteifung des Prosoma. Die Druckpumpe scheint hier im Opisthosoma lokalisiert zu sein. Hinsichtlich der möglichen Vorteile einer solchen Entwicklung lassen sich einerseits die besseren Bedingungen der Arbeit extrinsischer coxaler Muskeln im vollständig steifen "Gestell" des Prosoma nennen, andererseits könnte aufgrund entsprechender Lokomotionsmodi bei Perania keine Notwendigkeit zur schnellen Verschiebung großer Haemolymphvolumina aus dem Prosoma bestehen, so daß eine leistungsfähige prosomale Druckpumpe wegfallen konnte.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Karner
URN:urn:nbn:de:hebis:30-21071
URL:http://www.niobe.de/diss.html
Referee:Ulrich Maschwitz
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2005/11/14
Year of first Publication:1999
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2000/03/31
Release Date:2005/11/14
Tag:Biomechanik; Ctenidae; Cupiennius salei; Druckerzeugungsmechanismen; Kinematik; Perania nasuta; Sprung; Tetrablemmidae; Volumenverschiebungen
HeBIS-PPN:134245148
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht