Homologous production, one-step purification, and proof of Na+ transport by the Rnf complex from Acetobacterium woodii, a model for acetogenic conversion of C1 substrates to biofuels

  • Background: Capture and storage of the energy carrier hydrogen as well as of the greenhouse gas carbon dioxide are two major problems that mankind faces currently. Chemical catalysts have been developed, but only recently a group of anaerobic bacteria that convert hydrogen and carbon dioxide to acetate, formate, or biofuels such as ethanol has come into focus, the acetogenic bacteria. These biocatalysts produce the liquid organic hydrogen carrier formic acid from H2 + CO2 or even carbon monoxide with highest rates ever reported. The autotrophic, hydrogen-oxidizing, and CO2-reducing acetogens have in common a specialized metabolism to catalyze CO2 reduction, the Wood–Ljungdahl pathway (WLP). The WLP does not yield net ATP, but is hooked up to a membrane-bound respiratory chain that enables ATP synthesis coupled to CO2 fixation. The nature of the respiratory enzyme has been an enigma since the discovery of these bacteria and has been unraveled in this study. Results: We have produced a His-tagged variant of the ferredoxin:NAD oxidoreductase (Rnf complex) from the model acetogen Acetobacterium woodii, solubilized the enzyme from the cytoplasmic membrane, and purified it by Ni2+–NTA affinity chromatography. The enzyme was incorporated into artificial liposomes and catalyzed Na+ transport coupled to ferredoxin-dependent NAD reduction. Our results using the purified enzyme do not only verify that the Rnf complex from A. woodii is Na+-dependent, they also demonstrate for the first time that this membrane-embedded molecular engine creates a Na+ gradient across the membrane of A. woodii which can be used for ATP synthesis. Discussion: We present a protocol for homologous production and purification for an Rnf complex. The enzyme catalyzed electron-transfer driven Na+ export and, thus, our studies provided the long-awaited biochemical proof that the Rnf complex is a respiratory enzyme.
Metadaten
Verfasserangaben:Anja WiechmannORCiD, Dragan Trifunović, Sophie Klein, Volker MüllerORCiD
URN:urn:nbn:de:hebis:30:3-750757
DOI:https://doi.org/10.1186/s13068-020-01851-4
ISSN:1754-6834
Titel des übergeordneten Werkes (Englisch):Biotechnology for biofuels
Verlag:BioMed Central
Verlagsort:London
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Veröffentlichung (online):21.12.2020
Datum der Erstveröffentlichung:21.12.2020
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:13.10.2023
Freies Schlagwort / Tag:Anaerobic bacteria; Energy conservation; Respiration; Sodium transport
Jahrgang:13
Ausgabe / Heft:art. 208
Aufsatznummer:208
Seitenzahl:9
Erste Seite:1
Letzte Seite:9
Bemerkung:
Open Access funding enabled and organized by Projekt DEAL. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG).
Bemerkung:
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
HeBIS-PPN:514465212
Institute:Biowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoCreative Commons - CC BY - Namensnennung 4.0 International