### Refine

#### Year of publication

#### Document Type

- Working Paper (16)
- Report (2)

#### Keywords

- General Equilibrium (7)
- Asset Pricing (4)
- Contagion (4)
- stochastic volatility (4)
- Asset Allocation (3)
- Recursive Preferences (3)
- Discretization Error (2)
- Hedging (2)
- Model Error (2)
- Stochastic Volatility (2)

- When do jumps matter for portfolio optimization? : [Version 29 April 2013] (2013)
- We consider the continuous-time portfolio optimization problem of an investor with constant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset follows a jump-diffusion model with a diffusion state variable. We propose an approximation method that replaces the jumps by a diffusion and solve the resulting problem analytically. Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth equivalent loss that do not rely on results from the true model. We apply our method to a calibrated affine model and fine that relative wealth equivalent losses are below 1.16% if the jump size is stochastic and below 1% if the jump size is constant and γ ≥ 5. We perform robustness checks for various levels of risk-aversion, expected jump size, and jump intensity.

- When do jumps matter for portfolio optimization? (2015)
- We consider the continuous-time portfolio optimization problem of an investor with constant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset follows a jump-diffusion model with a diffusion state variable. We propose an approximation method that replaces the jumps by a diffusion and solve the resulting problem analytically. Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth equivalent loss that do not rely on quantities known only in the true model. We apply our method to a calibrated affine model. Our findings are threefold: Jumps matter more, i.e. our approximation is less accurate, if (i) the expected jump size or (ii) the jump intensity is large. Fixing the average impact of jumps, we find that (iii) rare, but severe jumps matter more than frequent, but small jumps.

- When are static superhedging strategies optimal? (2004)
- This paper deals with the superhedging of derivatives and with the corresponding price bounds. A static superhedge results in trivial and fully nonparametric price bounds, which can be tightened if there exists a cheaper superhedge in the class of dynamic trading strategies. We focus on European path-independent claims and show under which conditions such an improvement is possible. For a stochastic volatility model with unbounded volatility, we show that a static superhedge is always optimal, and that, additionally, there may be infinitely many dynamic superhedges with the same initial capital. The trivial price bounds are thus the tightest ones. In a model with stochastic jumps or non-negative stochastic interest rates either a static or a dynamic superhedge is optimal. Finally, in a model with unbounded short rates, only a static superhedge is possible.

- Asset pricing under uncertainty about shock propagation : [version 18 november 2013] (2013)
- We analyze the equilibrium in a two-tree (sector) economy with two regimes. The output of each tree is driven by a jump-diffusion process, and a downward jump in one sector of the economy can (but need not) trigger a shift to a regime where the likelihood of future jumps is generally higher. Furthermore, the true regime is unobservable, so that the representative Epstein-Zin investor has to extract the probability of being in a certain regime from the data. These two channels help us to match the stylized facts of countercyclical and excessive return volatilities and correlations between sectors. Moreover, the model reproduces the predictability of stock returns in the data without generating consumption growth predictability. The uncertainty about the state also reduces the slope of the term structure of equity. We document that heterogeneity between the two sectors with respect to shock propagation risk can lead to highly persistent aggregate price-dividend ratios. Finally, the possibility of jumps in one sector triggering higher overall jump probabilities boosts jump risk premia while uncertainty about the regime is the reason for sizeable diffusive risk premia.

- Commodities, financialization, and heterogeneous agents (2016)
- The term 'financialization' describes the phenomenon that commodity contracts are traded for purely financial reasons and not for motives rooted in the real economy. Recently, financialization has been made responsible for causing adverse welfare effects especially for low-income and low-wealth agents, who have to spend a large share of their income for commodity consumption and cannot participate in financial markets. In this paper we study the effect of financial speculation on commodity prices in a heterogeneous agent production economy with an agricultural and an industrial producer, a financial speculator, and a commodity consumer. While access to financial markets is always beneficial for the participating agents, since it allows them to reduce their consumption volatility, it has a decisive effect with respect to overall welfare effects who can trade with whom (but not so much what types of instruments can be traded).

- Equilibrium asset pricing in networks with mutually exciting jumps (2014)
- We analyze the implications of the structure of a network for asset prices in a general equilibrium model. Networks are represented via self- and mutually exciting jump processes, and the representative agent has Epstein-Zin preferences. Our approach provides a exible and tractable unifying foundation for asset pricing in networks. The model endogenously generates results in accordance with, e.g., the robust-yetfragile feature of financial networks shown in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014) and the positive centrality premium documented in Ahern (2013). We also show that models with simpler preference assumptions cannot generate all these findings simultaneously.

- Optimists and pessimists in (in)complete markets (2019)
- We study the effects of market incompleteness on speculation, investor survival, and asset pricing moments, when investors disagree about the likelihood of jumps and have recursive preferences. We consider two models. In a model with jumps in aggregate consumption, incompleteness barely matters, since the consumption claim resembles an insurance product against jump risk and effectively reproduces approximate spanning. In a long-run risk model with jumps in the long-run growth rate, market incompleteness affects speculation, and investor survival. Jump and diffusive risks are more balanced regarding their importance and, therefore, the consumption claim cannot reproduce approximate spanning.

- How does contagion affect general equilibrium asset prices? : [Version: March 13, 2013] (2013)
- This paper analyzes the equilibrium pricing implications of contagion risk in a Lucas-tree economy with recursive preferences and jumps. We introduce a new economic channel allowing for the possibility that endowment shocks simultaneously trigger a regime shift to a bad economic state. We document that these contagious jumps have far-reaching asset pricing implications. The risk premium for such shocks is superadditive, i.e. it is 2.5\% larger than the sum of the risk premia for pure endowment shocks and regime switches. Moreover, contagion risk reduces the risk-free rate by around 0.5\%. We also derive semiclosed-form solutions for the wealth-consumption ratio and the price-dividend ratios in an economy with two Lucas trees and analyze cross-sectional effects of contagion risk qualitatively. We find that heterogeneity among the assets with respect to contagion risk can increase risk premia disproportionately. In particular, big assets with a large exposure to contagious shocks carry significantly higher risk premia.

- What is the impact of stock market contagion on an investor's portfolio choice? (2009)
- Stocks are exposed to the risk of sudden downward jumps. Additionally, a crash in one stock (or index) can increase the risk of crashes in other stocks (or indices). Our paper explicitly takes this contagion risk into account and studies its impact on the portfolio decision of a CRRA investor both in complete and in incomplete market settings. We find that the investor significantly adjusts his portfolio when contagion is more likely to occur. Capturing the time dimension of contagion, i.e. the time span between jumps in two stocks or stock indices, is thus of first-order importance when analyzing portfolio decisions. Investors ignoring contagion completely or accounting for contagion while ignoring its time dimension suffer large and economically significant utility losses. These losses are larger in complete than in incomplete markets, and the investor might be better off if he does not trade derivatives. Furthermore, we emphasize that the risk of contagion has a crucial impact on investors' security demands, since it reduces their ability to diversify their portfolios.

- Partial information about contagion risk, self-exciting processes and portfolio optimization : [Version 18 April 2013] (2013)
- This paper compares two classes of models that allow for additional channels of correlation between asset returns: regime switching models with jumps and models with contagious jumps. Both classes of models involve a hidden Markov chain that captures good and bad economic states. The distinctive feature of a model with contagious jumps is that large negative returns and unobservable transitions of the economy into a bad state can occur simultaneously. We show that in this framework the filtered loss intensities have dynamics similar to self-exciting processes. Besides, we study the impact of unobservable contagious jumps on optimal portfolio strategies and filtering.