OPUS 4 Latest Documents RSS FeedLatest documents
http://publikationen.ub.uni-frankfurt.de/index/index/
Wed, 20 Jan 2010 11:06:28 +0100Wed, 20 Jan 2010 11:06:28 +0100Projections of tropical varieties and an application to small tropical bases
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/7438
Tropical geometry is the geometry of the tropical semiring \[\mathbb{T}:=(\mathbb{R}\cup\{\infty\},\min,+).\] Classical algebraic structures correspond to tropical structures. If $I\lhd K[x_1,\ldots,x_n]$ is an ideal in a polynomial ring over a field $K$ with valuation $v$, then the classical algebraic variety correspond to the tropical variety $T(I)$. It is the set of all points $w$, such that the minimum $\min\{v(c_\alpha)+w\cdot\alpha\}$ is achieved twice for all $f=\sum_\alpha c_\alpha x^\alpha\in I$. So tropical geometry relates algebraic geometric problems with discrete geometric problems. In this thesis we obtain a tropical version of the Eisenbud-Evans Theorem which states that every algebraic variety in $\mathbb{R}^n$ is the intersection of $n$ hypersurfaces. We find out that in the tropical setting every tropical variety $T(I)$ can be written as an intersection of only $(n+1)$ tropical hypersurfaces. So we get a finite generating system of $I$ such that the corresponding tropical hypersurfaces intersect to the tropical variety, a so-called tropical basis. Let $I \lhd K[x_1,\ldots,x_n]$ be a prime ideal generated by the polynomials $f_1, \ldots, f_r$. Then there exist $g_0,\ldots,g_{n} \in I$ such that \[ T(I) \ = \ \bigcap_{i=0}^{n}T(g_i)\] and thus $\mathcal{G} := \{f_1, \ldots, f_r, g_0, \ldots, g_{n}\}$ is a tropical basis for $I$ of cardinality $r+n+1$. Tropical bases are discussed by Bogart, Jensen, Speyer, Sturmfels and Thomas where it is shown that tropical bases of linear polynomials of a linear ideal have to be very large. We do not restrict the tropical basis to consist of linear polynomials and therefore we get a shorter tropical basis. But the degrees of our polynomials can be very large. The main ingredient to get a short tropical basis is the use of projections, in particular geometrically regular projections. Together with the fact that preimages of projections of tropical varieties are themselves tropical varieties of a certain elimination ideal we get the desired result. Let $I \lhd K[x_1, \ldots, x_n]$ be an $m$-dimensional prime ideal and $\pi : \mathbb{R}^n \to \mathbb{R}^{m+1}$ be a rational projection. Then $\pi^{-1}(\pi(T(I)))$ is a tropical variety, namely \[ \pi^{-1}(\pi(T(I))) \ = \ T(J \cap K[x_1, \ldots, x_n]) \,\] Here $J$ is an ideal in $K[x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_{n-m-1}]$ derived from the ideal $I$. We show that this elimination ideal is a principal ideal which yields a polynomial in our tropical basis. The advantage of our method is that we find our polynomials by projections and therefore we can use the results of Gelfand, Kapranov and Zelevinsky , of Esterov and Khovanskii , and of Sturmfels, Tevelev and Yu. With mixed fiber polytopes we get the structure and combinatorics of the image of a tropical variety and therefore the structure of the polynomials in our tropical basis. Let $I=\lhd K[x_1,\ldots,x_n]$ an $m$-dimensional ideal, generated by generic polynomials $f_1,\ldots, f_{n-m}$, $\pi:\mathbb{R}^n\to\mathbb{R}^{m+1}$ a projection and $\psi$ a projection presented by a matrix with a rowspace equal to the kernel of $\pi$. Then up to affine isomorphisms, the cells of the dual subdivision of $\pi^{-1} \pi T(I)$ are of the form \[ \sum_{i=1}^p \Sigma_{\psi} (C_{i1}^{\vee}, \ldots, C_{i{k}}^{\vee}) \] for some $p\in\mathbb{N}$ and faces $F_1, \ldots, F_p$ of $T(f_1)\cap\ldots\cap T(f_k)$ and the dual cell of $F_i\subseteq U = T(f_1)\cup\ldots\cup T(f_k)$ is given by $F_i^\vee=C_{i1}^{\vee}+ \ldots+ C_{ik}^{\vee}$ with faces $C_{i1}, \ldots, C_{i k}$ of $T(f_1), \ldots, T(f_{k})$. In case that we project a tropical curve we want to find the number of $(n-1)$-cells of the above form with $p>1$, i.e. the cells which are dual to vertices of $\pi(T(I))$ which are the intersection of the images of two non-adjacent $1$-cells of $T(I)$. Vertices of this type are called selfintersection points. We show that there exist a tropcal line $L_n\subset\mathbb{R}^n$ and a projection $\pi:\mathbb{R}^n\to\mathbb{R}^2$, such that $L_n$ has $\sum_{i=1}^{n-2}i$ selfintersection points. Furthermore we find tropical curves $\mathcal{C}\subset\mathbb{R}^n$, which are transversal intersections of $n-1$ tropical hypersurfaces of degrees $d_1,\ldots,d_{n-1}$ and a projection $\pi:\mathbb{R}^n\to\mathbb{R}^2$, such that $\mathcal{C}$ has at least $(d_1\cdot\ldots\cdot d_{n-1})^2\cdot \sum_{i=1}^{n-2}i) $ selfintersection points. A caterpillar is a certain simple type of a tropical line and for this type we show that it can have at most $\sum_{i=1}^{n-2}i$ selfintersection points.Kerstin Heptdoctoralthesishttp://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/7438Wed, 20 Jan 2010 11:06:28 +0100