162 search hits
-
Optimal destabilization of DNA double strands by single-nucleobase caging
(2018)
-
Patrick Seyfried
Marcel Heinz
György Pintér
Dean-Paulos Klötzner
Yvonne Becker
Michael Bolte
Hendrik R. A. Jonker
Lukas S. Stelzl
Gerhard Hummer
Harald Schwalbe
Alexander Heckel
- Photolabile protecting groups are widely used to trigger oligonucleotide activity. The ON/OFF‐amplitude is a critical parameter. An experimental setup has been developed to identify protecting group derivatives with superior caging properties. Bulky rests are attached to the cage moiety via Cu‐catalyzed azide–alkyne cycloaddition post‐synthetically on DNA. Interestingly, the decrease in melting temperature upon introducing o‐nitrobenzyl‐caged (NPBY‐) and diethylaminocoumarin‐cages (DEACM‐) in DNA duplexes reaches a limiting value. NMR spectroscopy was used to characterize individual base‐pair stabilities and determine experimental structures of a selected number of photocaged DNA molecules. The experimental structures agree well with structures predicted by MD simulations. Combined, the structural data indicate that once a sterically demanding group is added to generate a tri‐substituted carbon, the sterically less demanding cage moiety points towards the neighboring nucleoside and the bulkier substituents remain in the major groove.
-
Iodo(triphenyl)silane
(2019)
-
Frauke Schödel
Hans-Wolfram Lerner
Timo Trageser
Michael Bolte
- The molecular structure of the title compound, C18H15ISi, which crystallizes in the space group C2/c, does not exhibit any unusual features. Two weak C—H⋯π interactions may help to consolidate the packing. The present structure is not isostructural with the known Ph3SiX (X = F, Cl or Br) compounds.
-
Polymorphism and pseudosymmetry of 10,10′-oxybis(9-thia-10-hydro-10-boraanthracene)
(2019)
-
Julian Radtke
Hans-Wolfram Lerner
Michael Bolte
- We have encountered two polymorphs of the title compound, C24H16B2OS2, both of which display almost the same unit-cell parameters. Compound (I) crystallizes in the non-centrosymmetric space group P21 with four molecules in the asymmetric unit. These molecules are related by pseudosymmetry. As a result, the space group looks like P21/c, but the structure cannot be refined successfully in that space group. Compound (II) on the other hand crystallizes in the centrosymmetric space group P21/c with only two molecules in the asymmetric unit. The crystals studied for (I) and (II) were both non-merohedral twins.
-
Crystallographic and dynamic aspects of solid‐state NMR calibration compounds : towards ab initio NMR crystallography
(2016)
-
Xiaozhou Li
Lukas Tapmeyer
Michael Bolte
Jacco van de Streek
- The excellent results of dispersion‐corrected density functional theory (DFT‐D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT‐D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss‐NMR calibration compounds are investigated by single‐crystal X‐ray diffraction, molecular dynamics and DFT‐D calculations. The crystal structure of 3‐methylglutaric acid is reported. The rotator phases of adamantane and hexamethylbenzene at room temperature are successfully reproduced in the molecular dynamics simulations. The calculated 13C chemical shifts of these compounds are in excellent agreement with experiment, with a root‐mean‐square deviation of 2.0 ppm. It is confirmed that a combination of classical molecular dynamics and DFT‐D chemical shift calculation improves the accuracy of calculated chemical shifts.
-
A redox-active diborane platform performs C(sp3)–H activation and nucleophilic substitution reactions
(2018)
-
Thomas Kaese
Timo Trageser
Hendrik Budy
Michael Bolte
Hans-Wolfram Lerner
Matthias Wagner
- Organoboranes are among the most versatile and widely used reagents in synthetic chemistry. A significant further expansion of their application spectrum would be achievable if boron-containing reactive intermediates capable of inserting into C–H bonds or performing nucleophilic substitution reactions were readily available. However, current progress in the field is still hampered by a lack of universal design concepts and mechanistic understanding. Herein we report that the doubly arylene-bridged diborane(6) 1H2 and its B[double bond, length as m-dash]B-bonded formal deprotonation product Li2[1] can activate the particularly inert C(sp3)–H bonds of added H3CLi and H3CCl, respectively. The first case involves the attack of [H3C]− on a Lewis-acidic boron center, whereas the second case follows a polarity-inverted pathway with nucleophilic attack of the B[double bond, length as m-dash]B double bond on H3CCl. Mechanistic details were elucidated by means of deuterium-labeled reagents, a radical clock, α,ω-dihaloalkane substrates, the experimental identification of key intermediates, and quantum-chemical calculations. It turned out that both systems, H3CLi/1H2 and H3CCl/Li2[1], ultimately funnel into the same reaction pathway, which likely proceeds past a borylene-type intermediate and requires the cooperative interaction of both boron atoms.
-
Decachlorocyclopentasilanes coordinated by pairs of chloride anions, with different cations, but the same solvent molecules
(2017)
-
Maximilian Moxter
Julian Teichmann
Hans-Wolfram Lerner
Michael Bolte
Matthias Wagner
- We have determined the crystal structures of two decachlorocyclopentasilanes, namely bis(tetra-n-butylammonium) dichloride decachlorocyclopentasilane dichloromethane disolvate, 2C16H36N+·2Cl−·Si5Cl10·2CH2Cl2, (I), and bis(tetraethylammonium) dichloride decachlorocyclopentasilane dichloromethane disolvate, 2C8H20N+·2Cl−·Si5Cl10·2CH2Cl2, (II), both of which crystallize with discrete cations, anions, and solvent molecules. In (I), the complete decachlorocyclopentasilane ring is generated by a crystallographic twofold rotation axis. In (II), one cation is located on a general position and the other two are disordered about centres of inversion. These are the first structures featuring the structural motif of a five-membered cyclopentasilane ring coordinated from both sides by a chloride ion. The extended structures of (I) and (II) feature numerous C—H⋯Cl interactions. In (II), the N atoms are located on centres of inversion and as a result, the ethylene chains are disordered over equally occupied orientations.
-
A chiral analog of the bicyclic guanidine TBD : synthesis, structure and Brønsted base catalysis
(2016)
-
Mariano Goldberg
Denis Sartakov
Jan W. Bats
Michael Bolte
Michael W. Göbel
- Starting from (S)-β-phenylalanine, easily accessible by lipase-catalyzed kinetic resolution, a chiral triamine was assembled by a reductive amination and finally cyclized to form the title compound 10. In the crystals of the guanidinium benzoate salt the six membered rings of 10 adopt conformations close to an envelope with the phenyl substituents in pseudo-axial positions. The unprotonated guanidine 10 catalyzes Diels–Alder reactions of anthrones and maleimides (25–30% ee). It also promotes as a strong Brønsted base the retro-aldol reaction of some cycloadducts with kinetic resolution of the enantiomers. In three cases, the retro-aldol products (48–83% ee) could be recrystallized to high enantiopurity (≥95% ee). The absolute configuration of several compounds is supported by anomalous X-ray diffraction and by chemical correlation.
-
Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-iodophenol (1/2) : supramolecular assembly mediated by halogen and hydrogen bonding
(2017)
-
Augusto Rivera
Jicli José Rojas
Jaime Ríos-Motta
Michael Bolte
- The asymmetric unit of the title co-crystalline adduct, 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-iodophenol (1/2), C8H16N4·2C6H5IO, comprises a half molecule of the aminal cage polyamine plus a 4-iodophenol molecule. A twofold rotation axis generates the other half of the adduct. The components are linked by two intermolecular O—H⋯N hydrogen bonds. The adducts are further linked into a three-dimensional framework structure by a combination of N⋯I halogen bonds and weak non-conventional C—H⋯O and C—H⋯I hydrogen bonds.
-
Crystal structure of 2,2'-(ethane-1,2-diyl)bis(2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine) : a prospective raw material for polybenzoxazines
(2017)
-
Augusto Rivera
Juan E. Cepeda-Santamaría
Jaime Ríos-Motta
Michael Bolte
- In the title compound, C26H24N2O2, the oxazine moiety is fused to a naphthalene ring system. The asymmetric unit consists of one half of the molecule, which lies about an inversion centre. The C atoms of the ethylene spacer group adopt an antiperiplanar arrangement. The oxazine ring adopts a half-chair conformation. In the crystal, supramolecular chains running along the b axis are formed via short C—H⋯π contacts. The crystal studied was a non-merohedral twin with a fractional contribution of 0.168 (2) of the minor twin component.
-
Crystal structure of 1,3-bis[(E)-benzylideneamino]propan-2-ol
(2017)
-
Augusto Rivera
Ingrid Miranda-Carvajal
Jaime Rıos-Motta
Michael Bolte
- In the title compound, C17H18N2O, the central carbon atom with the OH substituent and one of the (E)-benzylideneamino substituents are disordered over two sets of sites with occupancies of 0.851 (4) and 0.149 (4). The relative positions of the two disorder components is equivalent to a rotation of approximately 60° about the C—N single bond. In the crystal, the molecules are held together by O—H...N hydrogen bonds, forming simple C(5) chains along the b-axis direction. In addition, pairs of the chains are further aggregated by weak C—H...π interactions.