### Refine

#### Document Type

- Article (2)
- Preprint (2)
- Report (2)
- Conference Proceeding (1)

#### Language

- English (7) (remove)

#### Is part of the Bibliography

- no (7) (remove)

#### Keywords

- Dessins d'enfants (1)
- Fuchsian groups (1)
- Riemann surfaces (1)
- Schwarz triangel functions (1)
- algebraic curves (1)
- algebraic values (1)
- compact Riemann surfaces (1)
- complex multiplication (1)
- dessins d’enfants (1)
- difference sets (1)

- ABC for polynomials, dessins d'enfants, and uniformization : a survey (2005)
- The main subject of this survey are Belyi functions and dessins d'enfants on Riemann surfaces. Dessins are certain bipartite graphs on 2-mainfolds defining there are conformal and even an algebraic structure. In principle, all deeper properties of the resulting Riemann surfaces or algebraic curves should be encoded in these dessins, but the decoding turns out to be difficult and leads to many open problems. We emphasize arithmetical aspects like Galois actions, the relation to the ABC theorem in function filds and arithemtic questions in uniformization theory of algebraic curves defined over number fields.

- Algebraic values of Schwarz triangle functions (2005)
- We consider Schwarz maps for triangles whose angles are rather general rational multiples of pi. Under which conditions can they have algebraic values at algebraic arguments? The answer is based mainly on considerations of complex multiplication of certain Prym varieties in Jacobians of hypergeometric curves. The paper can serve as an introduction to transcendence techniques for hypergeometric functions, but contains also new results and examples.

- How many quasiplatonic surfaces? (2004)
- We show that the number of isomorphism classes of quasiplatonic Riemann surfaces of genus <= g has o growth of typ g exp (log g). The number of non-isomorphic regular dessins of genus <= g has the same growth type.

- Conjugators of Fuchsian groups and quasiplatonic surfaces (2004)
- Let G be a Fuchsian group containing two torsion free subgroups defining isomorphic Riemann surfaces. Then these surface subgroups K and alpha-Kalpha exp(-1) are conjugate in PSl(2,R), but in general the conjugating element alpha cannot be taken in G or a finite index Fuchsian extension of G. We will show that in the case of a normal inclusion in a triangle group G these alpha can be chosen in some triangle group extending G. It turns out that the method leading to this result allows also to answer the question how many different regular dessins of the same type can exist on a given quasiplatonic Riemann surface.

- Cyclic projective planes and Wada dessins (2001)
- Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the fact that these embeddings give dessins d’enfants providing the surface with a unique structure as a Riemann surface and algebraic curve. In this paper, we study the (surprisingly many different) dessins coming from the graphs of finite cyclic projective planes. It turns out that all reasonable questions about these dessins — uniformity, regularity, automorphism groups, cartographic groups, defining equations of the algebraic curves, their fields of definition, Galois actions — depend on cyclic orderings of difference sets for the projective planes. We explain the interplay between number theoretic problems concerning these cyclic ordered difference sets and topological properties of the dessin like e.g. the Wada property that every vertex lies on the border of every cell.