Refine
Is part of the Bibliography
14 search hits
-
Distillation of strangelets for low initial mu/T
(1995)
-
Christian Spieles
Carsten Greiner
Horst Stöcker
Jean Pierre Coffin
- We calculate the evolution of quark-gluon-plasma droplets during the hadronization in a thermodynamical model. It is speculated that cooling as well as strangeness enrichment allow for the formation of strangelets even at very high initial entropy per baryon S/Ainit H 500 and low initial baryon numbers of Ainit B H 30. It is shown that the droplet with vanishing initial chemical potential of strange quarks and a very moderate chemical potential of up/down quarks immediately charges up with strangeness. Baryon densi- ties of H 2 0 and strange chemical potentials of µs > 350 MeV are reached if strangelets are stable. The importance of net baryon and net strangeness fluctuations for the possible strangelet formation at RHIC and LHC is em- phasized. Pacs-Classif.: 25.15.tr, 12.38.Mh, 24.85.tp
-
Hypermatter : properties and formation in relativistic nuclear collisions
(1995)
-
Lars Gerland
Christian Spieles
Marcus Bleicher
Panajotis Papazoglou
Jörg Brachmann
Adrian Dumitru
Horst Stöcker
Walter Greiner
Jürgen Schaffner
Carsten Greiner
- The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.
-
Dynamics of strangeness production and strange matter formation
(1996)
-
Christian Spieles
Marcus Bleicher
Lars Gerland
Horst Stöcker
Carsten Greiner
- We want to draw the attention to the dynamics of a (finite) hadronizing quark matter drop. Strange and antistrange quarks do not hadronize at the same time for a baryon-rich system1. Both the hadronic and the quark matter phases enter the strange sector fs 6= 0 of the phase diagram almost immediately, which has up to now been neglected in almost all calculations of the time evolution of the system. Therefore it seems questionable, whether final particle yields reflect the actual thermodynamic properties of the system at a certain stage of the evolution. We put special interest on the possible formation of exotic states, namely strangelets (multistrange quark clusters). They may exist as (meta-)stable exotic isomers of nuclear matter 2. It was speculated that strange matter might exist also as metastable exotic multi-strange (baryonic) objects (MEMO s 3). The possible creation in heavy ion collisions of long-lived remnants of the quark-gluon-plasma, cooled and charged up with strangeness by the emission of pions and kaons, was proposed in 1,4,5. Strangelets can serve as signatures for the creation of a quark gluon plasma. Currently, both at the BNL-AGS and at the CERN-SPS experiments are carried out to search for MEMO s and strangelets, e. g. by the E864, E878 and the NA52 collaborations9,
-
Baryon stopping and strangeness production in ultra-relativistic heavy ion collisions
(1996)
-
Lars Gerland
Christian Spieles
Marcus Bleicher
Horst Stöcker
Carsten Greiner
- The stopping behaviour of baryons in massive heavy ion collisions ( s k 10AGeV) is investigated within di erent microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data are indicating strong stopping. The initial baryo-chemical potentials and temperatures at collider energies and their impact on the formation probability of strange baryon clusters and strangelets are discussed.
-
Detectability of strange matter in heavy ion experiments
(1996)
-
Jürgen Schaffner-Bielich
Carsten Greiner
Alexander Diener
Horst Stöcker
- We discuss the properties of two distinct forms of hypothetical strange matter, small lumps of strange quark matter (strangelets) and of hyperon matter (metastable exotic multihypernuclear objects: MEMOs), with special empha- sis on their relevance for present and future heavy ion experiments. The masses of small strangelets up to AB = 40 are calculated using the MIT bag model with shell mode filling for various bag parameters. The strangelets are checked for possible strong and weak hadronic decays, also taking into account multiple hadron decays. It is found that strangelets which are stable against strong decay are most likely highly negative charged, contrary to previous findings. Strangelets can be stable against weak hadronic decay but their masses and charges are still rather high. This has serious impact on the present high sensitivity searches in heavy ion experiments at the AGS and CERN facilities. On the other hand, highly charged MEMOs are predicted on the basis of an extended relativistic mean field model. Those objects could be detected in future experiments searching for short lived, rare composites. It is demonstrated that future experiments can be sensitive to a much wider variety of strangelets.
-
"Pressure equilibration" in ultrarelativistic heavy ion collisions
(1997)
-
Jörg Brachmann
Adrian Dumitru
Christian Spieles
Joachim Maruhn
Horst Stöcker
Walter Greiner
- We study the time scale for pressure equilibration in heavy ion collisions at AGS energies within the three-fluid hydrodynamical model and a microscopic cascade model (UrQMD). We find that kinetic equilibrium is reached in both models after a time of 5 fm/c (center-of-mass time). Thus, observables which are sensitive to the early stage of the reaction differ considerably from the expectations within the instant thermalization scenario (one-fluid hydrodynamical model).
-
A microscopic calculation of secondary Drell-Yan production in heavy ion collisions
(1997)
-
Christian Spieles
Lars Gerland
Nils Hammon
Marcus Bleicher
Steffen A. Bass
Horst Stöcker
Walter Greiner
Carlos Lourenco
Ramona Vogt
- A study of secondary Drell-Yan production in nuclear collisions is presented for SPS energies. In addition to the lepton pairs produced in the initial collisions of the projectile and target nucleons, we consider the potentially high dilepton yield from hard valence antiquarks in produced mesons and antibaryons. We calculate the secondary Drell-Yan contributions taking the collision spectrum of hadrons from the microscopic model URQMD. The con- tributions from meson-baryon interactions, small in hadron-nucleus interac- tions, are found to be substantial in nucleus-nucleus collisions at low dilepton masses. Preresonance collisions of partons may further increase the yields.
-
Intermediate mass excess of dilepton production in heavy ion collisions at BEVALAC energies
(1998)
-
Christoph Ernst
Steffen A. Bass
Mohamed Belkacem
Horst Stöcker
Walter Greiner
- Dielectron mass spectra are examined for various nuclear reactions recently measured by the DLS collaboration. A detailed description is given of all dilepton channels included in the transport model UrQMD 1.0, i.e. Dalitz decays of π, η, ω, ή mesons and of the (1232) resonance, direct decays of vector mesons and pn bremsstrahlung. The microscopic calculations reproduce data for light systems fairly well, but tend to underestimate the data in pp at high energies and in pd at low energies. These conventional sources, however, cannot explain the recently reported enhancement for nucleus-nucleus collisions in the mass region 0.15GeV ≤ Me+e- ≤ 0.6GeV. Chiral scaling and ω meson broadening in the medium are investigated as a source of this mass excess. They also cannot explain the recent DLS data.
-
Nuclear shadowing effects on prompt photons at RHIC and LHC
(1998)
-
Nils Hammon
Adrian Dumitru
Horst Stöcker
Walter Greiner
- The transverse momentum distribution of prompt photons coming from the very early phase of ultrarelativistic heavy ion collisions for the RHIC and LHC energies is calculated by means of perturbative QCD. We calculate the single photon cross section (A + B -> gamma + X) by taking into account the partonic sub processes q + q -> gamma + g and q + g -> gamma + q as well as the Bremsstrahlung corrections to those processes. We choose a lower momentum cut-off k0 = 2 GeV separating the soft physics from perturbative QCD. We compare the results for those primary collisions with the photons produced in reactions of the thermalized secondary particles, which are calculated within scaling hydrodynamics. The QCD processes are taken in leading order. Nuclear shadowing corrections, which alter the involved nuclear structure functions are explicitly taken into account and compared to unshadowed results. Employing the GRV parton distribution parametrizations we find that at RHIC prompt QCD-photons dominate over the thermal radiation down to transverse momenta kT ≈ 2 GeV. At LHC, however, thermal radiation from the QGP dominates for photon transverse momenta kT ≤ 5 GeV, if nuclear shadowing effects on prompt photon production are taken into account.
-
Can momentum correlations proof kinetic equilibration in heavy ion collisions at 160/A-GeV?
(1998)
-
Marcus Bleicher
Mohamed Belkacem
Christoph Ernst
Henning Weber
Lars Gerland
Christian Spieles
Steffen A. Bass
Horst Stöcker
Walter Greiner
- We perform an event-by-event analysis of the transverse momentum distribution of final state particles in central Pb(160AGeV)+Pb collisions within a microscopic non-equilibrium transport model (UrQMD). Strong influence of rescattering is found. The extracted momentum distributions show less fluctuations in A+A collisions than in p+p reactions. This is in contrast to simplified p+p extrapolations and random walk models.