Refine
Is part of the Bibliography
2193 search hits
-
Cold fission as cluster decay with dissipation
(1996)
-
Eliade Ştefanescu
Werner Scheid
Aurel Săndulescu
Walter Greiner
- For cold (neutronless) fission we consider an analytical model of quantum tunneling with dissipation through a barrier U(q) evaluated with a M3Y nucleon-nucleon force. We calculate the tunneling spectrum, i.e., the fission rate as a function of the total kinetic energy of the fragments. The theoretical results are compared with the experimental data obtained for the fine structure of two cold fission modes of 252Cf: 148Ba+104Mo and 146Ba+106Mo. Taking into account the dissipative coupling of the potential function U(q) and of the momentum p with all the other neglected coordinates, we obtain a remarkable agreement with the experimental data. We conclude that the cold fission process is a spontaneous decay with a spectrum determined by the shape of the barrier and an amplitude depending on the strength of the dissipative coupling.
-
Room-temperature passive terahertz imaging based on high sensitivity field-effect transistor detectors
(2021)
-
Dovilė Čibiraitė-Lukenskienė
- Terahertz (THz) technology is an emerging field that considers the radiation between microwave and far-infrared regions where the electronic and photonic technologies merge. THz generation and THz sensing technologies should fill the gap between photonics and electronics which is defined as a region where THz generation power and THz sensing capabilities are at a low technology readiness level (TRL). As one of the options for THz detection technology, field-effect transistors with integrated antennae were suggested to be used as THz detectors in the 1990s by M. Dyakonov and M. Shur from where the development of field-effect transistor-based detector began. In this work, various FET technologies are presented, such as CMOS, AlGaN/GaN, and graphene-based material systems and their further sensitivity enhancement in order to reach the performance of well-developed Schottky diode-based THz sensing technology. Here presented FET-based detectors were explored in a wide frequency range from 0.1 THz up to 5 THz in narrowband and broadband configurations.
For proper implementation of THz detectors, the well-defined characterization is of high importance. Therefore, this work overviews the characterization methods, establishes various definitions of detector parameters, and summarizes the state-of-the-art THz detectors. The electrical, optical, and cryogenic characterization techniques are also presented here, as well as the best results obtained by the development of the characterization methods, namely graphene FET stabilization, low-power THz source characterization for detector calibration, and technology development for cryogenic detection.
Following the discussion about the detector characterization, a wide range of THz applications, which were tested during the last four years of Ph.D. and conducted under the ITN CELTA project from HORIZON2020 program, are presented in this work. The studies began with spectroscopy applications and imaging and later developed towards hyperspectral imaging and even passive imaging of human body THz radiation. As various options for THz applications, single-pixel detectors as well as multi-pixel arrays are also covered in this work.
The conducted research shows that FET-based detectors can be used for spectroscopy applications or be easily adapted for the relevant frequency range. State-of-the-art detectors considered in this work reach the resonant performance below 20 pW/√Hz at 0.3 THz and 0.5 THz, as well as 404 pW/√Hz cross-sectional NEP at 4.75 THz. The broadband detectors show NEP as low as 25 pW/√Hz at around 0.6 THz for the best AlGaN/GaN design and 25 pW/√Hz around 1 THz for the best CMOS design. As one of the most promising applications, metamaterial characterization was tested using the most sensitive devices. Furthermore, one of the single-pixel devices and a multi-pixel array were tested as an engineering solution for a radio astronomy system called GREAT in a stratosphere observatory named SOFIA. The exploration of the autocorrelation technique using FET-based devices shows the opportunity to employ such detectors for direct detection of THz pulses without an interferometric measurement setup.
This work also considers imaging applications, which include near-field and far-field visualization solutions. A considerable milestone for the theory of FET technology was achieved when scanning near-field microscopy led to the visualization of plasma (or carrier density) waves in a graphene FET channel. Whereas another important milestone for the THz technology was achieved when a 3D scan of a mobile phone was performed under the far-field imaging mode. Even though the imaging was done through the phone’s plastic cover, the image displayed high accuracy and good feature recognition of the smartphone, inching the FET-based detector technology ever so close to practical security applications. In parallel, the multi-pixel array testing was carried out on 6x7 pixel arrays that have been implemented in configurable-size aperture and imaging configurations. The configurable aperture size allowed the easier detector focusing procedure and a better fit for the beam size of the incident radiation. The imaging has been tested on various THz sources and compared to the TeraSense 16x16 pixel array. The experimental results show the big advantage of the developed multi-pixel array against the used commercial technology.
Furthermore, two ultra-low-power applications have been successfully tested. The application on hyper-frequency THz imaging tested in the specially developed dual frequency comb and our detector system for 300 GHz radiation with 9 spectral lines led to outstanding imaging results on various materials. The passive imaging of human body radiation was conducted using the most sensitive broadband CMOS detector with a log-spiral antenna working in the 0.1 – 1.5 THz range and reaching the optical NEP of 42 pW/√Hz. The NETD of this device reaches 2.1 K and overcomes the performance limit of passive room-temperature imaging of the human body radiation, which was less than 10 K above the room temperature. This experiment opened a completely new field that was explored before only by the multiplier chain-based or thermal detectors.
...
-
Passive detection and imaging of human body radiation using an uncooled field-effect transistor-based THz detector
(2020)
-
Dovilé Čibiraitė-Lukenskienė
Kęstutis Ikamas
Tautvydas Lisauskas
Viktor Krozer
Hartmut Roskos
Alvydas Lisauskas
- This work presents, to our knowledge, the first completely passive imaging with human-body-emitted radiation in the lower THz frequency range using a broadband uncooled detector. The sensor consists of a Si CMOS field-effect transistor with an integrated log-spiral THz antenna. This THz sensor was measured to exhibit a rather flat responsivity over the 0.1–1.5-THz frequency range, with values of the optical responsivity and noise-equivalent power of around 40 mA/W and 42 pW/√Hz, respectively. These values are in good agreement with simulations which suggest an even broader flat responsivity range exceeding 2.0 THz. The successful imaging demonstratestheimpressivethermalsensitivitywhichcanbeachievedwithsuchasensor. Recording of a 2.3×7.5-cm2-sized image of the fingers of a hand with a pixel size of 1 mm2 at a scanning speed of 1 mm/s leads to a signal-to-noise ratio of 2 and a noise-equivalent temperature difference of 4.4 K. This approach shows a new sensing approach with field-effect transistors as THz detectors which are usually used for active THz detection.
-
ω(782) und ϕ(1020) Mesonenproduktion durch Dielektronen in pp-Kollisionen bei √s = 7 TeV mit ALICE
(2013)
-
Mahmut Özdemir
- Die Niedrigmassendielektronen (Elektron-Positron Paare mit kleiner invarianten Masse) sind wichtige experimentelle Sonden, um die Eigenschaften des in ultra-relativistischen Schwerionenkollisionen erzeugten heißen und dichten Mediums zu untersuchen. Elektronen koppeln nicht an die starke Wechselwirkung, weshalb sie wichtige Informationen über die gesamten Kollisionsphasen geben. Die Zerfälle von ω(782) und ϕ(1020)-Mesonen in Dielektronen ermöglichen es, besonders wichtige Informationen über ihre In-Medium-Eigenschaften zu erhalten, da Proton-Proton (pp)-Kollisionen als mediumfreie Referenz angenommen werden. Außerdem sind pp-Kollisionen auch für sich genommen interessant, um die Teilchenproduktion im Energiebereich des LHC (Large Hadron Collider) zu untersuchen.
In dieser Analyse werden die Elektronen im mittleren Rapiditätsbereich von |η| < 0.8 mit ITS (Inner Tracking System), TPC (Time Projection Chamber) und TOF (Time of Flight) gemessen.
Die transversalen Impulsspektren der ω(782) und ϕ(1020)-Mesonen im e+e--Zerfallskanal in pp-Kollisionen bei p √s = 7 TeV werden gezeigt. Das transversale Impulsspektrum des ω(782)-Mesons im e+e--Zerfallskanal wird mit den pT-Spektren in den µ+µ--und in den π0π+π--Zerfallskanälen verglichen, während das pT-Spektrum vom ϕ(1020)-Meson im e+e--Zerfallskanal mit den pT-Spektren in µ+µ-- und K+K--Zerfallskanälen verglichen wird.
-
Dielectron cocktail simulation in pp, p–Pb and Pb–Pb collisions at LHC energies
(2014)
-
İrem Erdemir Özdemir
- The measurement of dielectrons (electron-positron pairs) allows to investigate the properties of strongly interacting matter, in particular the Quark-Gluon Plasma (QGP), which is created in relativistic heavy-ion collisions at the LHC. The evolution of the collision can be probed via dielectrons since electrons do not interact strongly and are created during all stages of the collision. One of the interests in dielectron measurements is motivated by possible modifications of the electromagnetic emission spectrum in the QGP, where pp collisions are used as a medium-free reference. The dielectron spectrum consists of contributions from various processes. In order to estimate contributions of known dielectron sources, simulations of the so-called dielectron cocktail are performed. In this thesis, dielectron cocktails in minimum bias pp collisions at p s = 7 TeV, p–Pb collisions at p sNN = 5.02 TeV and in central (0-10%) and semi-central (20-50%) Pb–Pb collisions at p sNN = 2.76 TeV at the LHC are presented.
-
Alternative geometrical designs for quartz-based cherenkov detectors for the PANDA barrel DIRC detector
(2016)
-
Marko Zühlsdorf
- The PANDA experiment will be one of the flagship experiments at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It is a versatile detector dedicated to topics in hadron physics such as charmonium spectroscopy and nucleon structure. A DIRC counter will deliver hadronic particle identification in the barrel part of the PANDA target spectrometer and will cleanly separate kaons with momenta up to 3.5 GeV/c from a large pion background. An alternative DIRC design option, using wide Cherenkov radiator plates instead of narrow bars, would significantly reduce the cost of the system. Compact fused silica photon prisms have many advantages over the traditional stand-off boxes filled with liquid. This work describes the study of these design options, which are important advancements of the DIRC technology in terms of cost and performance. Several new reconstruction methods were developed and will be presented. Prototypes of the DIRC components have been built and tested in particle beam, and the new concepts and approaches were applied. An evaluation of the performance of the designs, feasibility studies with simulations, and a comparison of simulation and prototype tests will be presented.
-
Development of FAIR-relevant X-ray diagnostics based on the interaction of lasers and particle beams with matter
(2020)
-
Şêro Jakob Zähter
- This Dissertation deals with the development of FAIR-relevant X-ray diagnostics based on the interaction of lasers and particle beams with matter. The associated experimental methods are supposed to be employed in the HIHEX-experiments in the HHT-cave of the GSI Helmholtz Center for Heavy-Ion Research GmbH (GSI) in Phase-0 and in the APPA-cave at the Facility for Antiproton and Ion Research in Darmstadt, Germany.
Diagnostic of high aerial density targets that will be used in FAIR experiments demands intense and highly penetrating X-ray sources. Laser generated well-directe relativistic electron beams that interact with high Z materials is an excellent tool for generation of short-pulse high luminous sources of MeV-gammas.
In pilot experiments carried out at the PHELIX laser system, GSI Darmstadt, relativistic electrons were produced in a long scale plasma of near critical electron density (NCD) by the mechanism of the direct laser acceleration (DLA). Low density polymer foam layers preionised by a well-defined nanosecond laser pulse were used as NCD targets. The analysis of the measured electron spectra showed up to 10- fold increase of the electron "temperature" from T_Hot = 1–2 MeV, measured for the case of the interaction of 1–2 ×10^19 Wcm^(−2) ps-laser pulse with a planar foil, up to 14 MeV for the case when the relativistic laser pulse propagates through the by a ns-pulse preionised foam layer. In this case, up to 80–90 MeV electron energy was registered. An increase of the electron energy was accompanied by a strong increase of the number of relativistic electrons and well-defined directionality of the relativistic electron beam measured to be (12 ±1)° (FWHM). This directionality increases the gamma flux on target by far compared to the soft X-ray sources.
Additionally to laser based active diagnostics, passive techniques involving inherent X-ray fluorescence radiation of projectile and target emitted during heavy-ion target interaction can be used to measure the ion beam distribution on shot. This information is of great importance, since the target size is chosen to be smaller than the beam focus in order to ensure homogeneous heating of the HIHEX-target by the ion beam. High amounts of parasitic radiation and activation of experimental equipment is expected for experiments at the APPA-cave. For this reason, all electronic devices must be placed at a safe distance to the target chamber. In order to transport the signal over a large distance, the X-ray image of the target irradiated by heavy-ions has to be converted into an optical one.
For these purposes, the X-ray Conversion to Optical radiation and Transport (XCOT)-system was developed in the frame of a BMBF-project and commissioned in two beamtimes at the UNILAC, GSI during this work.
In experiments, we observed intense radiation of target atoms (K-shell transitions in Cu at 8–8.3 keV and L-shell transition in Ta) ionised in collisions with heavy ions as well as Doppler-shifted L-shell transitions of Au-projectiles passing through targets. This radiation can be used for monochromatic (dispersive elements like bent crystals) or polychromatic (pinhole) 2D X-ray mapping of the ion beam intensity distribution in the interaction region during the beam-target interaction. We measured the efficiency of the X-ray photon production depending on the target thickness and the number of ions passing through the target. The spatial resolution of the XCOT-system based on the multi-pinhole camera was measured to be (91±17) μm for the image magnification factor M = 2. It was considerably improved by application of a toroidally bent quartz crystal and reached 30 μm at M = 6. This resolution is optimal to image the distribution of a 1mm in diameter ion beam. As next step, the XCOT-system will be tested during the SIS18 beam-time at the HHT-experimental area.
-
Design of a bunch shape monitor for high current LINACs at GSI
(2016)
-
Benjamin Zwicker
-
Impact of baryon resonances on the chiral phase transition at finite temperature and density
(2004)
-
Detlef Zschiesche
Gebhard Zeeb
Stefan Schramm
Horst Stöcker
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.
-
Particle ratios from AGS to RHIC in an interacting hadronic model
(2003)
-
Detlef Zschiesche
Gebhard Zeeb
Kerstin Paech
Horst Stöcker
Stefan Schramm
- Abstract: The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) Ã É approach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The inmedium masses turn out to differ up to 150 MeV from their vacuum values.