710 search hits
-
Optimierung Guanidin-basierter RNA-Spalter
für den Einsatz in der Bioanalytik:
von einer Rarität zur Routine
(2021)
-
Felix Zellman
- Trotz der Verfügbarkeit von siRNA, dem aktuellen Goldstandard zur Generierung von RNAInterferenz-vermitteltem Gen-silencing, stellen unerwünschte Immunantworten des Organismus auf doppelsträngige RNA exogenen Ursprungs noch immer ein fundamentales Problem dar, besonders mit Hinblick auf die Entwicklung Oligonukleotid-basierter Wirkstoffe.
Durch das begrenzte Repertoire an Modifikationen, welches durch die Abhängigkeit von zelleigenen Faktoren unter anderem zur Steigerung der intrazellulären Stabilität und zur
Reduktion unerwünschter Effekte zur Verfügung steht, konnte bis dato nur einer überschaubaren Anzahl entsprechender Oligonukleotide eine offizielle Zulassung für die therapeutische Anwendung in der Medizin erteilt werden.
Hier bergen künstliche Ribonukleasen, welche die Umesterungsreaktion unabhängig von der zellinternen Maschinerie ebenfalls effizient und sequenzspezifisch bewerkstelligen können, großes Potential als eine Alternative. Während Metall-basierte Systeme in der Regel auf
unphysiologisch hohe Konzentrationen zweiwertiger Übergangsmetallionen, wie beispielsweise Lanthanoide oder auch Kupfer, angewiesen sind, könnten metallfreie Katalysatoren dahingehend eine wesentlich flexiblere Option darstellen. Die Optimierung Guanidin-basierter RNA-Spalter für den Einsatz in der Bioanalytik und Medizin stellt seit geraumer Zeit eines der obersten Ziele unseres Arbeitskreises dar. Unter diesen bewährte sich vor allem das Tris(2-aminobenzimidazol), welches in Form von Konjugaten mit Antisense-Oligonukleotiden kurze Modellsubstrate sequenzspezifisch spaltet.
Neben der äußerst mühseligen, vielstufigen Synthese eines konjugierbaren Tris(2-aminobenzimidazol)s waren die untersuchten Systeme mit Halbwertszeiten von
teilweise über 20 Stunden jedoch viel zu langsam, um auch potentiell beobachtbare Veränderung des Phänotyps in vivo induzieren zu können. Ein weiterer begrenzender Faktor
stellte die Konjugationstrategie des Spalters über Aktivester-Chemie und Aminolinker dar, welche eine Kupplungsausbeute von 0 % bis im besten Fall ca. 30 % lieferte. Um eine Methode zu erhalten, welche routinemäßig zur sequenzspezifischen Spaltung einer Vielzahl verschiedener RNA-Substrate genutzt werden kann, war folglich eine praktikablere Synthesestrategie zur Darstellung der Spalterkonjugate einerseits und zudem eine Erhöhung der Katalysatoraktivität andererseits notwendig, um auch kurzlebige Ziel-RNAs wirkungsvoll
ausschalten zu können. In diesem Zusammenhang wurde eine neue Syntheseroute erarbeitet, welche den für die
Konjugation funktionalisierten Spalter über wenige Stufen in Mengen von über 10 g lieferte. Daran anschließend konnte die Synthese eines Phosphoramidits realisiert werden, welches in einer manuellen Kupplungsprozedur die Darstellung von 5‘-Konjugaten des Tris(2-aminobenzimidazol)s in exzellenten Ausbeuten und, im Vergleich zur vorherigen
Methode, wesentlich kürzeren Kupplungszeiten ermöglichte. Die vollständige Kompatibilität des Phosphoramidits mit der automatisierten Festphasensynthese konnte im Rahmen dieser
Arbeit jedoch nicht erreicht werden. Während die manuelle Prozedur Konjugationsausbeuten von über 90 % lieferte, wurden an einem handelsüblichen Oligonukleotid-Synthesizer auch
nach Modifikation der Kupplungsprotokolle und bei erhöhtem Amiditverbrauch lediglich 65 %erzielt. Durch Inkorporation von LNA-Nukleotiden in zwei gegen die PIM1-mRNA gerichtete 15mer
DNA-Konjugate ließ sich eine Reduktion der Halbwertszeit von Cy5-markierten 22mer Modellsubstrate auf unter 4 h erreichen, wobei dieses Resultat auch anhand eines 412mer Modellsubstrats und in Gegenwart hoher Phosphatkonzentrationen reproduziert werden konnte. Darüber hinaus wurde die besondere Rolle des closing base pairs, sowohl bezüglich der Selektivität als auch der Kinetik der Spaltung, offensichtlich. Während stärker hybridisierende GC-Basenpaare generell eine hohe Präzision gewährleisteten, trat im Falle von AT-Basenpaaren fraying auf, d. h. es konnte auch innerhalb des vermeintlichen Duplex Spaltung beobachtet werden. Genauere Studien zur Positionierung von LNA-Nukleotiden ergaben bei unmittelbarer Lokalisation am 5‘-Terminus von AT-closing base pairs zwar einen selektivitätssteigernden Effekt, überraschenderweise konnte in diesem Fall jedoch auch eine Inhibierung der Spaltungskinetik festgestellt werden. Durch Verschiebung in die vorletzte Position konnte die Aktivität des Konjugats ohne Präzisionsverlust jedoch wiederhergestellt werden. Erste Experimente zur intrazellulären Stabilität der Spalterkonjugate ergaben quantitative, stufenweise Zersetzung, sowohl des DNA- als auch der Mixmer-Konjugate nach wenigen Stunden, was die Notwendigkeit weiterer stabilitätssteigernder Modifikationen zur Vorbereitung auf in vivo-Experimente impliziert. Auf der Suche nach neuen Spaltern stellte sich vor allem das 2-Aminoimidazol als einer der aussichtsreichsten Kandidaten für genauere Untersuchungen heraus. Das korrespondierende Tris(2-aminoimidazol) konnte über eine Marckwald-Synthese in wenigen Stufen dargestellt werden. Erste Spaltexperimente ergaben vor allem in niedrigen Konzentrationen (10 μM) eine im Vergleich zum Benzimidazol-Analogon vielfach höhere Aktivität. Obwohl die Synthese eines funktionalisierten Bisimidazol-benzimidazols gelang,
steht dessen Konjugation mit Oligonukleotiden und deren Aktivitätsbestimmung noch aus.
-
Endolysosomal effectors and their relevance for antiviral activity against the Hepatitis E virus
(2021)
-
Mirco Glitscher
-
Die Rolle des S1P-Rezeptors S1P5, des S1P-Transporters Spinster 2 und der kettenlängenspezifischen Ceramide bei Nierenfibrose
(2021)
-
Timon Sebastian Eckes
- Es ist bekannt, dass die Aktivierung von S1P-Rezeptoren die Expression von profibrotischen Mediatoren, wie dem Bindegewebswachstumsfaktor CTGF, induzieren und deshalb auch eine Rolle bei der Entstehung der Nierenfibrose spielen kann. In diesem Kontext konnte unsere Arbeitsgruppe zeigen, dass die Aktivierung von S1P5 zur TGF-β2-induzierten CTGF-Expression in humanen glomerulären Mesangiumzellen beiträgt (Wünsche et al. 2015). Im Rahmen dieser Doktorarbeit wurde deshalb die Rolle von S1P5 in einem in vivo-Modell zur Nierenfibrose untersucht. Männliche S1P5-/--Mäuse und Wildtypmäuse mit C57BL/6J-Hintergrund wurden mit einer adeninreichen Diät für jeweils 7 und 14 Tage gefüttert, um eine tubulointerstitielle Fibrose hervorzurufen. Die Nieren von unbehandelten Mäusen des jeweiligen Genotyps dienten als Kontrolle. Die Ergebnisse zeigen, dass S1P5-/--Mäuse geringere Kreatininplasmaspiegel und weniger Schäden im Nierengewebe gegenüber Wildtypen zeigten. Darüber hinaus wurde festgestellt, dass die mRNA-Expression von mehreren Fibrosemarkern und proinflammatorischen Zytokinen in den S1P5-/--Mäusen schwächer war als in den Wildtypen. Die Auswertung von histochemischen Färbungen und Western Blots bestätigte diese Beobachtung. Zusammengefasst kann festgehalten werden, dass S1P5 eine wichtige Rolle bei der Entstehung von Adenin-induzierter Entzündung in der Niere und nachfolgender Pathogenese wie Gewebeschäden und Fibrose spielt.
Ceramide sind ein Bestandteil der Lipiddoppelschicht, in allen eukaryotischen Zellen vorhanden und zentrale Moleküle des Sphingolipidstoffwechsels. Die Synthese und der Abbau der Ceramide werden von vielen verschiedenen Enzymen reguliert. Neben ihrer Aufgabe als strukturelle Elemente der Zellmembranen wurde herausgefunden, dass Ceramide auch in verschiedenen Signalwegen involviert sind, die auch bei Nierenerkrankungen eine Rolle spielen. In Bezug auf die Kettenlänge der angehängten Fettsäure können so genannte kurz- und langkettige Ceramide Apoptose induzieren, wohingegen sehr langkettige Ceramide Zellproliferation fördern. In mehreren Studien wurden bereits Konzentrationsänderungen von kettenlängenspezifischen Ceramiden im Plasma und Serum von Patienten gemessen, die zu diesem Zeitpunkt an einer Nierenerkrankung litten. In dieser Arbeit wurde daher untersucht, ob solche Konzentrationsänderungen auch im Nierengewebe von Patienten und Mäusen mit einer Nierenfibrose, dem Kennzeichen nahezu aller chronischen Nierenerkrankungen, zu sehen sind. Zu diesem Zwecke wurden Biopsien der Nierenrinde und des Nierenmarks von fibrotischen Nieren aus Patienten, die an Hydronephrose und/oder Pyelonephritis litten, und von gesunden Gewebeproben untersucht. Letztere wurden durch Nephrektomien zur Behandlung von Nierenkarzinomen gewonnen und dienten als nichtfibrotische Kontrolle. Zum Vergleich mit fibrotischen Nieren aus Mäusen wurden männliche Mäuse der Linie C57BL/6J mit einer adeninreichen Diät für 14 Tage gefüttert. Die Konzentrationen der Sphingolipide wurden mittels Massenspektrometrie gemessen und die Level der fibrotischen Marker wurden mit Hilfe von RT-qPCR und histologischen Färbungen analysiert. Die Ergebnisse zeigen, dass die sehr langkettigen Ceramide Cer d18:1/24:0 und Cer d18:1/24:1 sowohl in fibrotischen Nierenrindenproben der Patienten als auch in fibrotischen Nieren der Mäuse im Vergleich zu den jeweiligen Kontrollproben signifikant geringer konzentriert waren. Diese Effekte korrelieren mit der Hochregulation der Fibrosemarker COL1α1, COL3α1 und αSMA in den fibrotischen Nieren. Es konnte gezeigt werden, dass nur bestimmte Ceramide in fibrotischem Nierengewebe in ihrer Konzentration verändert sind, was interessante Fragen hinsichtlich der Ursache dieser Veränderungen, ihrer funktionellen Aufgabe und zu möglichen Effekten einer Manipulation des Ceramidstoffwechsels mit dem Ziel der Behandlung der Nierenfibrose oder der Entdeckung neuer Biomarker aufwirft. Die hier präsentierten Ergebnisse zeigen zudem die Eignung von in vivo-Mausmodellen als translationalen Ansatz für das Verständnis der Beteiligung von Ceramiden in menschlichen Nierenerkrankungen.
Die in vitro-Untersuchungen zu der Rolle des S1P-Transporters Spns2 haben gezeigt, dass Spns2 die Expression von CTGF nach Stimulation von Mausmesangiumzellen mit TFG-β2 verstärkt. 24 Stunden nach Stimulation war im Zellkulturüberstand von Spns2-/--mMC im Gegensatz zu Spns2+/+-mMC keine Akkumulation des pro-fibrotischen Zytokins CTGF gegenüber der unstimulierten Kontrolle detektierbar. Nach 48 Stunden Stimulation mit TFG-β2 war die Menge an CTGF im Zelllysat als auch im Zellkulturüberstand von Spns2-/--mMC genauso hoch wie in der unstimulierten Kontrolle. Im Zelllysat und im Überstand der Spns2-/--mMC war die Expression von CTGF weiterhin deutlich höher im Vergleich zu den Proben der unstimulierten Zellen. Die basale und TFG-β2-induzierte Genexpression von S1P-synthetisierenden und S1P-degradierenden Enzymen, sowie die Konzentrationen an S1P und Sphingosin in den Zellen unterschieden sich zwischen Spns2-/--mMC und Spns2+/+-mMC nicht.
-
Optimisation and development of NMR spectroscopic methods for the investigation of biomolecular dynamics
(2020)
-
György Pintér
-
Versatile regulation of autophagy by the deubiquitinase USP11
(2020)
-
Mila Basic
- Autophagy, together with the ubiquitin-proteasome system, is the main quality control pathway responsible for maintaining cell homeostasis. There are several types of autophagy distinguished by cargo selectivity and means of induction. This thesis focuses on macroautophagy, hereafter autophagy, where a double-layered membrane is formed originating from the endoplasmatic reticulum (ER) engulfing cargo selectively or unselectively. Subsequently, a vesicle forms around the cargo, an autophagosome, and eventually fuses with the lysosome leading to degradation of the vesicle content and release of the cargo “building blocks”. Basal autophagy continuously occurs, unselectively engulfing a portion of the cytoplasm. However, autophagy can also be induced by stress such as starvation, protein aggregation, damaged organelles, intracellular pathogens etc. In this case, the cargo is selectively targeted, and the fate of the autophagosome is the same as in basal autophagy. In recent years, interest in identifying mechanisms of autophagy regulation has risen due to its importance in neurodegenerative diseases and cancer. Given the complexity of the process, its execution is tightly regulated from initiation, autophagosome formation, expansion, closure, and finally fusion with the lysosome. Each of the steps involves different protein complexes, whose timely activity is orchestrated by post-translational modifications. One of them is ubiquitination. Ubiquitin is a small, 76-amino acid protein conjugated in a 3-step reaction to other proteins, in a reversible manner, meaning undone by deubiquitinases. Originally described as a degradation signal targeting proteins to the proteasome, today it is known it has various additional non-proteolytic functions, such as regulating a protein’s activity, localization, or interaction partners. The role of ubiquitin in autophagy has already been shown. However, given the reversibility and fine-tuning of the ubiquitin signal, many expected regulators remain unidentified. This work aimed to identify novel deubiquitinating enzymes that regulate autophagy. We identified ubiquitin-specific protease 11 (USP11) as a novel, negative regulator of autophagy. Loss of USP11 leads to an increase in autophagic flux, whereas overexpression of USP11 attenuates it. Moreover, this observation was reproducible in model organism Caenorhabditis elegans, emphasizing the importance of USP11 in autophagy regulation. To identify the mechanism of USP11-dependent autophagy regulation, we performed a USP11 interactome screen after 4 hour Torin1 treatment and identified a plethora of autophagy-related proteins. Following the most prominent hits, we have investigated versatile ways in which USP11 regulates autophagy. USP11 interacts with the PI3KC3 complex, the role of which is phosphorylating lipids of the ER, thereby initiating the formation of the autophagosomal membrane. Phosphorylated lipids serve as a recruitment signal for downstream effector proteins necessary for the membrane expansion. The core components of the complex are VPS34, the lipid kinase, ATG14, the protein responsible for targeting the complex to the ER, VPS15, a pseudokinase with a scaffolding role, Beclin1, a regulatory subunit, and NRBF2, the dimer-inducing subunit. We have found USP11 interacts with the complex and, based on its activity, USP11 influences post-translational status of all the aforementioned subunits, except for ATG14. Moreover, we have found that loss of USP11 leads to an increase in NRBF2 levels, whereas it does not change the levels of the other proteins. Given that the dimerization of the complex leads to an increase in complex activity, we investigated if the complex is more tightly formed in the absence of USP11, and if it is more active. We have found both to be the case. Although the exact mechanism of USP11-dependent PI3KC3 complex regulation remains to be identified, we found that loss of USP11 stimulates the complex formation and activity, likely contributing to the general effect of USP11 on autophagy flux. Additionally, we found that USP11 modulates levels of mTOR, the most upstream kinase in autophagy initiation steps and general multifaceted metabolism regulator. Loss of USP11 led to downregulation of mTOR levels, suggesting USP11 may rescue mTOR from proteasome-mediated degradation. Furthermore, we found mTOR to be differentially modified depending on the activity of USP11. However, it remains to be shown if USP11-dependent mTOR regulation contributes to the observed autophagy phenotype. Taken together, USP11 is a novel, versatile, negative regulator of autophagy, and an important addition to our knowledge on the regulation of autophagy by the ubiquitin system.
-
Using fingerprints and machine learning tools for the prediction of novel dual active compounds for leukotriene A4 hydrolase and soluble epoxide hydrolase
(2021)
-
Lena Hefke
- The aim of this work was to establish a new way of predicting novel dual active compounds by combining classical fingerprint representation with state-of-the-art machine learning algorithms. Advantages and disadvantages of the applied 2D- and 3D-fingerprints were investigated. Further, the impact of various machine learning algorithms was analyzed. The new method developed in this work was used to predict compounds, which inhibit two different targets (LTA4H and sEH) involved in the same disease pattern (inflammation). The development of multitarget drugs has become more important in recent years. Many widespread diseases like metabolic syndrome, or cancer are of a multifactorial nature, which makes them hard to be treated effectively with a single drug. The new in silico method presented in this work can help to accelerate the design and development of multitarget drugs, saving time and efforts.
The nowadays readily available access to a large number of 3D-structures of biological targets and published activity data of millions of synthesized compounds enabled this study and was used as a starting point for this work. Four different data sets were compiled (crystalized ligands from the PDB, active and inactive compounds from ChEMBL23, newly designed compounds using a combinatorial library). Those data sets were collected and processed using an automated KNIME workflow. This automation has the advantage of allowing easy change and update of compound sources and adapted processing ways.
In a next step, the compounds from the compiled data sets were represented using a variety of well-established 2D- and 3D-fingerprints (PLIF, AtomPair, Morgan, FeatMorgan, MACCS). All those fingerprints share the same underlying bit string scheme but vary in the way they describe the molecular structure. Especially the difference between 2D- and 3D-fingerprints was investigated. 2D-fingerprints are solely based on ligand information. 3D-fingerprints, on the other hand, are based on X-ray structure information of protein-ligand complexes. One major difference between 2D- and 3D-fingerprints usage is the need for a 3D-conformation (pose) of the compound in the targets of interest when using 3D-fingerprints. This additional step is time-consuming and brings further uncertainties to the method.
Based on the calculated fingerprints state-of-the-art machine learning algorithms (SVC, RF, XGB and ADA) were used to predict novel dual active compounds. The models were evaluated by 10-fold cross validation and accuracy as the primary measure of model performance was maximized. Second, individual parameters of the four machine learning algorithms were optimized in a grid search to achieve maximal accuracy using the optimized partitioning scheme. Overall accuracies, regardless of fingerprint and machine learning algorithm, are slightly better for LTA4H than for sEH.
The goal to predict dual active compounds was realized by comparing the set of predicted to be active compounds for LTA4H and sEH. For the 3D-fingerprint PLIF the machine learning algorithm Random Forest was chosen, from which compounds for synthesis and testing were selected. Of 115 predicted to be active compounds, six compounds were cherry picked. Two compounds showed very good/moderate dual inhibitory activity. Of the 2D-fingerprints, the AtomPair fingerprint in combination with the machine learning algorithm Random Forest was chosen from which compounds were selected for synthesis and testing. 116 compounds were predicted to be dual active against LTA4H and sEH. One of those compounds showed good dual inhibitory activity.
In this work it was possible to show advantages and disadvantages of using 2D- and 3D-fingerprints in combination with machine learning algorithms. Both strategies (2D: ligand-based, 3D: structure-based) lead to the prediction of novel dual active compounds with moderate to very good inhibitory activity. The method developed in this work is able to predict dual active compounds with very good inhibitory activity and novel (previously unknown) scaffolds inhibiting the targets LTA4H and sEH. This contribution to in silico drug design is promising and can be used for the prediction of novel dual active compounds. Those compounds can further be optimized regarding binding affinity, solubility and further pharmacological and physicochemical properties.
-
Development of new concepts for photoswitchable DNA-nanostructure
(2019)
-
Nikolai Michal Grebenovsky
- The fact that the interaction of oligonucleotides follows strict rules has been utilized to create two- or three-dimensional objects made of DNA. With computer-assisted design of DNA sequences, any arbitrary structure on the nanometer- to micrometer-scale can be generated just by hybridization of the needed strands. As astonishing these structures are, without any modification of the DNA strands involved no function can be assigned to them. Many different ways of functionalizing DNA-nanostructures have been developed with light-responsive nanostructures having a rather subordinated role. Almost all light responsive DNA-nanostructures involve the acyclic azobenzene-linking system tAzo based on D-threoninol which is known to work best at elevated temperatures to ensure optimal switching. As the structure of DNA-constructs is mainly maintained by hydrogen-bonding, variation of the temperature should be avoided in order to keep the structure intact.
To develop a light-responsive nanostructure model system with low-temperature operating azobenzene C-nucleosides, DNA-minicircles have been utilized. Those minicircles bear a lariat-like protrusion with a 10 base long single-stranded overhang, which is responsible for the dimerization with a ring bearing a complementary binding region. DNA-minicircles have been produced in a sequential manner by building and purifying the single stranded minicircle first by splint ligation and prepratative PAGE or RP-HPLC, followed by annealing it to the outer ring and subsequent purification by molecular-weight cut-off. Imaging of DNA-minicircles by atomic force microscopy (AFM) was possible with several methods of sample preparation leading to images of varying quality. With the help of AFM, qualitative analysis of the minicircles was possible. It could be shown, that theoretical and empirical size dimensions of the rings and their interactions were in great accordance. Designing the interaction site of the minicircles proved to be the main task in this project. The amount of C-nucleosidic modifications was identified by screening, followed by a screening of their optimal position and binding partners in the counterstrand. Two azobenzene C-nucleosides in a 10mer binding region and abasic sites opposing them appeared to give the best compromise between absolute dimerization ratio and photocontrolled change of it, as identified by native PAGE. In the following, the dimerization ratios of minicircles containing azobenzene C-nucleosides were compared with minicircles containing tAzo and unmodified minicircles. It could be shown, that the tAzo-modification leads to an elevated binding affinity compared to the unmodified minicircles, but the change upon irradiation is relatively humble compared to the C-nucleosides. For the C-nucleosidic modifications dimerization ratios reached a maximum of 40% in favored trans-state, but could be almost completely turned-off when switching into cis-state. In addition, arylazopyrazole-modified C-nucleosides could be switched into trans-state by irradiating at 530 nm, which is an improvement compared to standard azobenzene, as it shifts irradiation wavelength closer to the phototherapeutic window.
The utilization of DNA-analogous C-nucleosides bring two drawbacks with them: the ribose units include the flexibility of the sugar conformation and it is reasonable to think, that upon isomerization of the azobenzene, part of the steric stress generated is compensated by the sugar reconfiguration, which is lost for duplex
destabilization. In addition, the combination of the ribosidic linker end the end-to-end distance of trans-azobenzene causes the chromophore to penetrate deep into the base stack of the opposing strand, causing a serious destabilization even in favored trans-state. The goal was to find a linker system, that combines the benefits of the azobenzene C-nucleoside without the possibility to change sugar conformation and the strong destabilization in the trans-state. For this reason locked azobenzene C-nucleosides in analogy to LNA nucleosides have been synthesized. The synthesis of LNA analogous azobenzene C-nucleosides (LNAzo) was possible over a 16-step synthesis, with the critical step being the addition of in situ lithiated azobenzene to protected sugar aldehyde. Both anomers of LNAzo and mAzo as reference where incorporated into different oligonucleotide test systems by solid phase synthesis for thorough evaluation. It could be shown, that LNAzo β has a similar performance to mAzo in DNA with overall slightly increased TM- and ΔTM-values. Performance of LNAzo β was similar to mAzo even if steric stress is reduced by using abasic sites in the counterstrand opposing the azobenzene. Only in a RNA context, the true potential of LNAzo β could be observed. In a DNA/RNA duplex, photocontrol could be improved by almost 50%, in a RNA/RNA duplex even by over 100%. Although the primary goal was the improvement of the azobenzene C-nucleoside for a DNA-nanostructure context, LNAzo β proved not to give a sufficient improvement in regard to the cost-value ratio. Never the less, the invention of the locked azobenzene C-nucleoside was a huge success for reversible photoregulation of RNA hybridization. With this, a new way to regulate RNA hybridization has been found, which could be used to create RNA therapeutics in an antisense-approach.
As LNAzo β improved duplex stability only in a limited amount in DNA, further improvements on the backbone have been declared futile and focus shifted onto optimization of the chromophore. First, the azobenzene as it is installed on the ribosidic linker decreases duplex stability by forcing its distal aromat deep into opposing base stacking region. It would be an improvement, if in favored trans-state the distal aromat would be positioned in the less confined space of either major or minor groove and only upon isomerization would shift into base pairing region. Second, the azobenzene itself is not able to contribute to attractive interactions aside from relatively weak π-interactions to adjacent nucleobases, which could be improved, if it could partake in hydrogen bonding. For those apparent reasons, 2-phenyldiazenyl-modified purines have been selected as targets. They combine the ability to contribute to hydrogen bonding of nucleobases with the photochomicity of azobenzenes. Both 2’-deoxyadenosine- and 2’-deoxyguanosine-analogue photoswitches dAAzo and dGAzo have been synthesized and incorporated into 10mer DNA test systems by solid phase synthesis. It could be shown, that duplex stability could be increased compared to established azobenzene C-nucleoside. The improvement was stronger for dAAzo than for dGAzo as in the case for guanosine the amino function on the C2-position had to be replaced by the phenyldiazenyl function, reducing its ability to form hydrogen bonds. Unfortunately, photocontrol of duplex stability caused by 2-phenyldiazenyl purines was rather limited. A reason for this could be the positioning of the distal aromat within the duplex, which can be close to the opposing nucleobase (endo-helical) or in greater distance (exo-helical). The exo-helical conformation of the trans-isomer can only switch to the exo-P-cis-conformation, which relocates the distal aromat in the minor groove, without significant impact on duplex stability.
-
Inhibition of F1Fo ATP synthases by bacterial
virulence factors and photoswitchable azopolyphenols
(2019)
-
Bianca Eisel
- F1Fo ATP synthases are important membrane-embedded nano-machines which are conserved among all three kingdoms of life. They use a proton or sodium gradient across the membrane to drive ATP synthesis, which is the major source of energy for the cell. As ATP synthases are essential for pathogens such as mycobacteria, they are important drug targets for the treatment of infectious diseases. In this work, structural studies on the E. coli ATP synthase are performed. Furthermore, bacterial virulence MgtC proteins are investigated. Additionally, photo-switches are used to spatiotemporally control yeast ATPase activity...
-
Structural and functional study of NADH: ubiquinone Oxidoreductase (Complex I) from "Aquifex aeolicus"
(2018)
-
Wenxia Liu
- NADH:ubiquinone oxidoreductase (Complex Ⅰ) is the first and largest enzyme in the respiratory chain. It catalyzes the transfer of two electrons from NADH to ubiquinone via a series of enzyme-bound redox centers - Flavin mononucleotide (FMN) and iron-sulfur (Fe-S) clusters – and couples the exergonic reaction with the endergonic translocation of four protons across the membranes. Bacteria contain the minimal form of complex I, which is composed of 14 conserved core subunits with a molecular mass of around 550 kDa. Complex Ⅰ has an L-shaped structure which can be subdivided into two major parts (arms). The hydrophilic arm protruding into the bacterial cytosol (or mitochondrial matrix) harbors the binding site for the substrate NADH, the two- to one-electron switch FMN and all one-electron transferring Fe-S clusters and therefore considered as the catalytic unit. The membrane arm consists of the membranespanning subunits and conducts the proton pumping process. The Quinone binding site is located at the interface of both arms. ...
-
Identifizierung und Charakterisierung neuer Inhibitoren der C2-ähnlichen Domäne der 5-Lipoxygenase
(2011)
-
Joanna Marta Wisniewska
- Die 5-Lipoxygenase (5-LO) katalysiert die ersten beiden Schritte der Leukotrien (LT)-Biosynthese (Samuelsson et al., 1987). Das Substrat Arachidonsäure (AA) wird im ersten Schritt zu einem Fettsäurehydroperoxid, der 5(S)-Hydroperoxy-6-trans-8,11,14-cis-Eikosatetraensäure (5-HpETE) oxidiert. Durch Dehydrierung entsteht im zweiten Reaktionsschritt das instabile Epoxid LTA4. Weiter wandeln zwei Synthasen das LTA4 zum einen in LTB4 oder zum anderen in die Cysteinyl-LTs C4, D4 und E4 um (Samuelsson et al., 1987). Die 5-LO wird in Zellen myeloiden Ursprungs exprimiert und kommt vor allem in reifen Leukozyten vor.
LTs spielen eine wichtige Rolle bei der angeborenen Immunantwort und vermitteln vor allem entzündliche und allergische Reaktionen (Funk 2001; Peters-Golden & Henderson, 2007). Asthma bronchiale, kardiovaskuläre Erkrankungen wie Atherosklerose, Osteoporose oder verschiedene Krebsarten werden im Zusammenhang mit der 5-LO untersucht (Werz & Steinhilber, 2006). Die Inhibition der LT-Biosynthese oder die Senkung der LT-Spiegel stellt eine Möglichkeit dar, den entzündungsfördernden Eigenschaften entgegenzuwirken. Inhibitoren der LT-Biosynthese lassen sich in indirekte und direkte 5-LO-Inhibitoren gliedern. Zu den indirekten 5-LO-Inhibitoren zählen FLAP-Antagonisten (Young, 1991; Evans et al., 2008) sowie CysLT1-Rezeptorantagonisten (Darzen, 1998). Von den vier Gruppen der direkten 5-LO-Inhibitoren (redoxaktive, Eisenligand-, nichtredox- sowie diverse Inhibitoren (Pergola & Werz, 2010)) ist bisher nur Zileuton (Carter et al., 1991), ein Eisenligand-Inhibitor, als Wirkstoff zur Behandlung von Asthma bronchiale in den USA zugelassen.
Das Ziel der vorliegenden Arbeit war es, die neuartige Klasse der Imidazo[1,2-a]pyridine hinsichtlich ihrer 5-LO-Inhibition, ihrer Löslichkeit sowie ihrer Effekte auf die Zellviabilität zu evaluieren und zu optimieren. Dabei stand das Verständnis der Rezeptor-Ligand-Wechselwirkung im Fokus. Ausgehend von Substanz A14, der potentesten Substanz eines virtuellen Screenings nach dualen COX/5-LO-Inhibitoren (Hofmann et al., 2008), wurden 78 Substanzen in ionophor-stimulierten intakten polymorphkernigen Leukozyten (PMNL) sowie im zellfreien System, dem Überstand nach 100.000 × g Zentrifugation (S100) von homogenisierten PMNL, bezüglich ihrer inhibitorischen Aktivität untersucht. Die Effekte auf die Zellviabilität nach Inkubation mit den Substanzen für 48 h auf die humane leukämische Monozytenvorläufer Zelllinie U937 wurden mit Hilfe eines WST-Assays, der die mitochondriale Aktivität misst, sowie eines LDH-Assays, zur Bestimmung der Freisetzung von LDH als Folge von Nekrose, evaluiert.
Innerhalb der Struktur-Aktivitäts-Beziehung (SAR) der 78 Derivate konnte kein eindeutiges Substitutionsmuster, das sowohl in intakten PMNL als auch in zellfreiem S100 zu den gleichen Schlüssen führt, festgestellt werden. Ausgehend von Substanz A14 konnte die inhibitorische Aktivität verbessert werden, wobei Substanzen mit nanomolaren IC50-Werten in beiden Assaysystemen resultierten. Die Substanzen lassen sich in drei strukturelle Teile gliedern: Einen oberen Teil am sekundären Amin, ein bizyklisches N-fusioniertes Imidazopyridin (Teil A) sowie einen Teil B am aromatischen Kern. Nur für den oberen Teil ließ sich ein allgemein-gültiges Substitutionsmuster feststellen. Am sekundären Amin führen in intakten PMNL größere Substituenten zu einer Verbesserung der inhibitorischen Aktivität, wobei dies bis zu einer Cyclohexylgruppe gilt und eine Adamantyl-Substitution eine Ausnahme bildet. Allgemein lässt sich feststellen, dass bei einer Cyclohexylgruppe am sekundären Amin und einer Methylgruppe an Position 6 in Teil A, die Substituenten in Teil B stark variieren können, ohne an inhibitorischer Aktivität zu verlieren. Werden innerhalb des oberen Teils oder in Teil A die Substituenten polarer, sind in Teil B weniger Variationen möglich. Es werden insbesondere lipophile Reste toleriert. Beim Versuch, die Löslichkeit zu verbessern, zeigte sich, dass ein Gleichgewicht zwischen polaren und unpolaren Substituenten vorliegen muss. Auch die Einflüsse der Substituenten auf die Zellviabilität konnten nicht einem allgemein-gültigen Muster unterworfen werden. Mit Substanz 15 konnte ein Derivat identifiziert werden, das verglichen mit der Ausgangssubstanz A14 eine verbesserte inhibitorische Aktivität aufweist (IC50-Werte von 0,16 µM (PMNL) und 0,1 µM (S100)), löslicher ist (clogP-Wert von 4,6) und keine Nekrose auslöst. Weiter zeigten auch die Substanzen 31 und 50 eine Verbesserung der inhibitorischen Aktivität (IC50-Werte von 0,26 µM bzw. 0,58 µM (PMNL) und 0,8 µM bzw. 0,16 µM (S100)) ohne Nekrose auszulösen, wobei Substanz 50 zusätzlich eine verringerte Lipophilie (clogP-Wert von 4,2) aufweist. Substanz 76 ist mit einem IC50-Wert von 6 nM die im zellfreien System aktivste Substanz unter den 78 getesteten Derivaten.
Ein vielversprechender Vertreter dieser neuartigen Klasse der Imidazo[1,2-a]pyridine, Substanz 15 (EP6), wurde in verschiedenen Assaysystemen charakterisiert. EP6 ist ein hochwirksamer Inhibitor der 5-LO mit einem IC50-Wert von 0,16 µM in intakten PMNL und weist im zellfreien S100 von PMNL einen IC50-Wert von 0,1 µM, am partiell gereinigten Enzym einen IC50-Wert von 0,05 µM auf. Die vergleichbare inhibitorische Aktivität in intakten Zellen sowie im zellfreien System lässt auf eine direkte Inhibition der 5-LO schließen. Die Zugabe der allosterischen Faktoren ATP oder Calcium hat keinen Einfluss auf die Potenz von EP6. Auch ist die Inhibition nicht vom Redoxzustand der Zelle abhängig, wie im Falle bekannter nichtredox-Inhibitoren (Werz et al., 1998). Die Zugabe von steigenden Mengen an exogenem Substrat AA zu S100 von PMNL führt zu keiner Beeinträchtigung der Potenz von EP6, was im Vergleich zu den nichtredox-Inhibitoren einen Vorteil bei entzündlichen Prozessen mit erhöhten Lipidhydroperoxid-Spiegeln darstellt. Bei ionophor-stimulierten PMNL ohne die Zugabe von exogenem Substrat resultiert ein sechsfach höherer IC50-Wert von 1,2 µM, der auf eine allosterische Inhibition durch EP6 hinweist, bei der Substrat in ausreichenden Mengen vorliegen muss, damit EP6 mit dem 5-LO-AA-Komplex interagieren kann. Darüber hinaus inhibiert EP6 die LT-Bildung unabhängig von der Art der 5-LO-Stimulation bei einer Zugabe von 20 µM exogener AA. Der physiologische Stimulus in PMNL über N-Formylmethionyl-Leucyl-Phenylalanin (fMLP) führt zu einem höheren IC50-Wert von 0,76 µM mit Zugabe von 20 µM AA und bestätigt die Ergebnisse von ionophor-stimulierten PMNL ohne Zugabe von exogenem Substrat. Für EP6 konnte weiterhin eine allosterische Bindestelle an der C2-ähnlichen Domäne der 5-LO postuliert werden. Die Zugabe von Phosphatidylcholin führte zu einer verminderten inhibitorischen Aktivität. Durch Experimente mit einer Mutante der 5-LO, bei der die Tryptophane, welche die Membranbindung vermitteln, ausgetauscht sind (3W-Mutante), konnte die Interaktion dieser Aminosäuren mit EP6 gezeigt werden. Über einen Kompetitionsassay mit der C2-ähnlichen Domäne, Mutations- und Docking-Studien, wurden die Aminosäuren Y81, Y100 und Y383 des Interfaces der beiden Domänen der 5-LO als essentiell für die Bindung identifiziert. Somit zählt EP6 als Vertreter der Klasse der Imidazo[1,2-a]pyridine neben Hyperforin und AKBA zu den einzigen mit der C2-ähnlichen Domäne interagierenden 5-LO-Inhibitoren.
EP6 ist ein selektiver Inhibitor der 5-LO, der die 15-LO1, 15-LO2 und 12-LO nicht inhibiert. Weiterhin werden drei weitere Enzyme der AA-Kaskade, die Cyclooxygenase-1 und -2 sowie die mikrosomale Prostaglandin E2 Synthase-1 nicht durch EP6 beeinflusst. Neben der humanen 5-LO wird auch die murine 5-LO, in intakten RAW 264.7 Zellen und deren S100 getestet, mit niedrig mikromolarem bzw. nanomolarem IC50-Wert inhibiert, was die erste Voraussetzung für potentielle in vivo Studien darstellt.
Die Inhibition der 5-LO-Produktbildung in humanem Vollblut konnte jedoch bis zu einer Konzentration von 30 µM EP6 nicht gehemmt werden. EP6 ist lipophil (clogP-Wert von 4,6) und weist eine hohe Plasmaproteinbindung (Bindung an humanes Serumalbumin von 97,5 ± 0,7% bei 10 µg/ml EP6) auf, was die Unwirksamkeit in humanem Vollblut erklären könnte.
Abschließend wurden die Effekte von EP6 auf die Zellviabilität untersucht. Die Experimente wurden zunächst in U937 bei einer Inkubationszeit von 48 h mit einer maximalen Konzentration von 30 µM EP6 durchgeführt. EP6 führt zu keinen unmittelbaren zytotoxischen Effekten innerhalb der Inkubationszeit der in dieser Arbeit durchgeführten Aktivitätsassays (gezeigt in PMNL). Weiter wurde jedoch gezeigt, dass die mitochondriale Aktivität nach Inkubation für 48 h mit einem EC50-Wert von 14 µM beeinträchtigt wird (WST-Assay). Dieser Effekt ist jedoch nicht auf Nekrose zurückzuführen, da die gemessene Konzentration an freigesetztem LDH gering bleibt. Über ein Langzeitexperiment wurde die Abnahme der Lebendzellzahl nach Inkubation mit 30 µM EP6 nach 24 h festgestellt. Über Detektion von PARP-Spaltung, einem Marker für späte Apoptose, stellte sich heraus, dass EP6 in U937 Apoptose induziert. Zusätzlich zu den Untersuchungen der leukämischen Zelllinie wurden humane nicht-tumor Zellen (RPE) im Langzeitexperiment sowie im BrdU-Assay untersucht. EP6 beeinträchtigt die Lebendzellzahl der nicht-tumor Zelllinie RPE nicht und führt nur zu geringen antiproliferativen Effekten.