### Refine

#### Document Type

- Doctoral Thesis (1) (remove)

#### Keywords

- 19F NMR shifts for fluoroarenes (1) (remove)

#### Institute

- Biochemie, Chemie und Pharmazie (1) (remove)

- Quantum chemical prediction of 19F NMR shifts for perfluorinated arenes and magnetic exchange coupling constants for diradicals (2016)
- This thesis primarily covers a systematic assessment of quantum chemical methods to predict accurate 19F NMR shifts for fluoroarenes and magnetic exchange coupling constant (J) in organic spin dimers which are basic building blocks for rational designing of organic magnetic materials. One of the most important goals in chemistry is to design and synthesize molecules with optimum properties. This thesis is divided into two parts: the first part comprises of a systematic effort to find an inexpensive quantum chemical method to predict accurate 19F NMR chemical shifts (within an accuracy of 2 ppm) for perfluoraromatics. Essentially, these strenuous efforts have been devoted to find best DFT functional and basis set combination to predict accurate 19F shifts. In addition,the influence of geometrical parameters, solvents, chemical environment was also analyzed. Various correction approaches were tested to correct the calculated shifts. The influence of various functionals and basis sets was also analyzed on the correction efficiency of an individual scheme. All the NMR calculation methods already being used and correction approaches were verified to predict shifts of three different fluorine-substituted molecular sets. These structure sets include fluorobenzenes, substituted benzenes and fluorine substituted aromatic fused rings (e.g. fluorine substituted anthracene). In the second part of this thesis, we investigated the accurate prediction of magnetic exchange couplings (J) for organic spin dimers using quantum chemical methods. We analyzed the performance of various DFT methods and various post-HF methods, such as the CASSCF, CASPT2, MSTDISD, DDCI1, DDCI2, DDCI3, and FCI to predict magnetic exchange couplings (J). Overview of the Chapters: Chapter 1, presents a brief theoretical introduction to the SchrÃ¶dinger equation and its application in quantum mechanical calculations, the Hartree-Fock approximation, basis sets, electron correlation energy, and density functional theory (using pure and hybrid functionals). In chapters 2 and 3, an introduction is given for quantum chemical approaches used to calculate NMR parameters and magnetic exchange coupling constants. We discuss an effective spin Hamiltonian, the Breit-Pauli Hamiltonian (BPH), chemical shielding tensor and total energy relationship, measuring of the NMR spectra, and different techniques to deal with gauge origin problem. In addition, the theoretical background of magnetic exchange coupling constant calculation for spin dimers, the Heisenberg-Dirac-van-Vleck Hamiltonian (HDVV) and the Noodelman's broken-symmetry approach for calculating J values are briefly discussed. Chapter 4, presents a benchmark study of various DFT functionals and basis sets to calculate accurate C-F bond lengths and 19F chemical shifts. High-resolution NMR spectral data of complex molecules are often difficult to interpret. Great scientific efforts have been devoted to search for a computational approach to interpret experimental NMR data. Quantum chemical methods such as the CCSD(T) method offer high accuracy in calculation of NMR parameters but being computationally too demanding they cannot be applied to large chemical systems. On the other hand, density functional theory (DFT) is achieving a steady progress among diversity of computational techniques. An accuracy within 2 ppm deviation from the experimental values in 19F chemical shifts can be achieved if the NMR calculation is performed using accurate equilibrium geometries, GIAO is used to tackle gauge origin problem and electron correlation is properly treated by employing a high level of theory (e.g. CCSD (T)/cc-pVQZ). We found that the calculation of 19F shielding tensors with the density-functional theory does not provide any noticeable improvement over the HF method. Post-HF theory demands too much computational resources that makes them impossible to use for large systems [35] . We found that a quantitative prediction of NMR shifts can be made as the errors introduced by theoretical methods are cancelled out while calculating shifts. Various benchmark studies in this thesis show that 19F chemical shifts calculated for perfluoraromatics with the M06-L, BHandH, BHandHLYP in combination with the 6-311+G (2d,p) basis set are within 4 ppm deviation from the experiments. Furthermore, we noted that NMR calculations on accurate C-F (e.g. PBE/6-311G (d, p)) bond lengths does not show any improvement if the NMR calculation and optimization are performed at the same level of theory. A significant improvement can be achieved on calculated 19F NMR shifts, if some correction schemes are used. In chapter 4 we discuss various correction schemes applied to correct the calculated 19F chemical shifts. A multi-standard approach (MSTD) was used to minimize the error that may occur due to the difference in the nature of the reference compound and test molecules [122]. We propose another approach to correct shielding constants which is the reference corrected approach. This approach makes a correction similar to the MSTD. We also tested a Linear Regression Correction Approach and we noted that this is the best approach amongst all. This is found to be less dependent on the theoretical method. We use conformation averaging corrections to correct the calculated shifts[126]. ...