### Refine

#### Year of publication

#### Document Type

- Conference Proceeding (19) (remove)

#### Has Fulltext

- yes (19) (remove)

- Towards finite density QCD with Taylor expansions (2011)
- We analyze general convergence properties of the Taylor expansion of observables to finite chemical potential in the framework of an effective 2+1 flavor Polyakov-quark-meson model. To compute the required higher order coefficients a novel technique based on algorithmic differentiation has been developed. Results for thermodynamic observables as well as the phase structure obtained through the series expansion up to 24th order are compared to the full model solution at finite chemical potential. The available higher order coefficients also allow for resummations, e.g. Padé series, which improve the convergence behavior. In view of our results we discuss the prospects for locating the QCD phase boundary and a possible critical endpoint with the Taylor expansion method.

- The spectrum of static-light baryons in twisted mass lattice QCD (2010)
- We compute the static-light baryon spectrum with Nf = 2 flavors of sea quarks using Wilson twisted mass lattice QCD. As light valence quarks we consider quarks, which have the same mass as the sea quarks with corresponding pion masses in the range 340MeV<∼ mPS<∼ 525MeV, as well as partially quenched quarks, which have the mass of the physical s quark. We extract masses of states with isospin I = 0,1/2,1, with strangeness S = 0,−1,−2, with angular momentum of the light degrees of freedom j = 0,1 and with parity P = +,−. We present a preliminary extrapolation in the light u/d and an interpolation in the heavy b quark mass to the physical point and compare with available experimental results.

- The pseudoparticle approach for solving path integrals in gauge theories (2005)
- We present a numerical technique for calculating path integrals in non-compact U(1) and SU(2) gauge theories. The gauge fields are represented by a superposition of pseudoparticles of various types with their amplitudes and color orientations as degrees of freedom. Applied to Maxwell theory this technique results in a potential which is in excellent agreement with the Coulomb potential. For SU(2) Yang-Mills theory the same technique yields clear evidence of confinement. Varying the coupling constant exhibits the same scaling behavior for the string tension, the topological susceptibility and the critical temperature while their dimensionless ratios are similar to those obtained in lattice calculations.

- The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling (2008)
- We perform a detailed study of the adjoint static potential in the pseudoparticle approach, which is a model for SU(2) Yang-Mills theory. We find agreement with the Casimir scaling hypothesis and there is clear evidence for string breaking. At the same time the potential in the fundamental representation is linear for large separations. Our results are in qualitative agreement with results from lattice computations.

- Tetraquark resonances computed with static lattice QCD potentials and scattering theory (2018)
- We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP) = 0(1−), mass MeV and decay width MeV.

- Testing mixed action approaches to meson spectroscopy with twisted mass sea quarks (2013)
- poster presentation at the 31st International Symposium on Lattice Field Theory LATTICE 2013: We explore and compare three mixed action setups with Wilson twisted mass sea quarks and different valence quark actions: (1) Wilson twisted mass, (2) Wilson twisted mass + clover and (3) Wilson + clover. Our main goal is to reduce lattice discretization errors in mesonic spectral quantities, in particular to reduce twisted mass parity and isospin breaking.

- Strange and charm meson masses from twisted mass lattice QCD (2012)
- We present first results of a 2+1+1 flavor twisted mass lattice QCD computation of strange and charm meson masses. We focus on D and D_s mesons with spin J = 0,1 and parity P = -,+.

- Status of ETMC simulations with Nf = 2+1+1 twisted mass fermions (2008)
- We present the status of runs performed in the twisted mass formalism with Nf =2+1+1 flavours of dynamical fermions: a degenerate light doublet and a mass split heavy doublet. The procedure for tuning to maximal twist will be described as well as the current status of the runs using both thin and stout links. Preliminary results for a few observables obtained on ensembles at maximal twist will be given. Finally, a reweighting procedure to tune to maximal twist will be described.

- Static-light meson masses from twisted mass lattice QCD (2008)
- We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300MeV<~ mPS<~ 600MeV. We have extrapolated our results, to make predictions regarding the spectrum of B and Bs mesons.

- Scalar mesons and tetraquarks by means of lattice QCD (2012)
- We study the light scalar mesons a_0(980) and kappa using N_f = 2+1+1 flavor lattice QCD. In order to probe the internal structure of these scalar mesons, and in particular to identify, whether a sizeable tetraquark component is present, we use a large set of operators, including diquark-antidiquark, mesonic molecule and two-meson operators. The inclusion of disconnected diagrams, which are technically rather challenging, but which would allow us to extend our work to e.g. the f_0(980) meson, is introduced and discussed.