346 search hits
-
Deep learning based impact parameter determination for the CBM experiment
(2021)
-
Manjunath Omana Kuttan
Jan Steinheimer
Kai Zhou
Andreas Redelbach
Horst Stöcker
- In this talk we presented a novel technique, based on Deep Learning, to determine the impact parameter of nuclear collisions at the CBM experiment. PointNet based Deep Learning models are trained on UrQMD followed by CBMRoot simulations of Au+Au collisions at 10 AGeV to reconstruct the impact parameter of collisions from raw experimental data such as hits of the particles in the detector planes, tracks reconstructed from the hits or their combinations. The PointNet models can perform fast, accurate, event-by-event impact parameter determination in heavy ion collision experiments. They are shown to outperform a simple model which maps the track multiplicity to the impact parameter. While conventional methods for centrality classification merely provide an expected impact parameter distribution for a given centrality class, the PointNet models predict the impact parameter from 2–14 fm on an event-by-event basis with a mean error of −0.33 to 0.22 fm.
-
A fast centrality-meter for heavy-ion collisions at the CBM experiment
(2020)
-
Manjunath Omana Kuttan
Jan Steinheimer
Kai Zhou
Andreas Redelbach
Horst Stöcker
- A new method of event characterization based on Deep Learning is presented. The PointNet models can be used for fast, online event-by-event impact parameter determination at the CBM experiment. For this study, UrQMD and the CBM detector simulation are used to generate Au+Au collision events at 10 AGeV which are then used to train and evaluate PointNet based architectures. The models can be trained on features like the hit position of particles in the CBM detector planes, tracks reconstructed from the hits or combinations thereof. The Deep Learning models reconstruct impact parameters from 2-14 fm with a mean error varying from -0.33 to 0.22 fm. For impact parameters in the range of 5-14 fm, a model which uses the combination of hit and track information of particles has a relative precision of 4-9% and a mean error of -0.33 to 0.13 fm. In the same range of impact parameters, a model with only track information has a relative precision of 4-10% and a mean error of -0.18 to 0.22 fm. This new method of event-classification is shown to be more accurate and less model dependent than conventional methods and can utilize the performance boost of modern GPU processor units.
-
Feeddown contributions from unstable nuclei in relativistic heavy-ion collisions
(2020)
-
Volodymyr Vovchenko
Benjamin Dönigus
Behruz Kardan
Manuel Lorenz
Horst Stöcker
- We estimate the feeddown contributions from decays of unstable A=4 and A=5 nuclei to the final yields of protons, deuterons, tritons, 3He, and 4He produced in relativistic heavy-ion collisions at sNN>2.4 GeV, using the statistical model. The feeddown contribution effects do not exceed 5% at LHC and top RHIC energies due to the large penalty factors involved, but are substantial at intermediate collision energies. We observe large feeddown contributions for tritons, 3He, and 4He at sNN≲10 GeV, where they may account for as much as 70% of the final yield at the lower end of the collision energies considered. Sizable (>10%) effects for deuteron yields are observed at sNN≲4 GeV. The results suggest that the excited nuclei feeddown cannot be neglected in the ongoing and future analysis of light nuclei production at intermediate collision energies, including HADES and CBM experiments at FAIR, NICA at JINR, RHIC beam energy scan and fixed-target programmes, and NA61/SHINE at CERN. We further show that the freeze-out curve in the T-μB plane itself is affected significantly by the light nuclei at high baryochemical potential.
-
Conserved charge fluctuations are not conserved during the hadronic phase
(2017)
-
Jan Steinheimer
Volodymyr Vovchenko
Jörg Aichelin
Marcus Bleicher
Horst Stöcker
- We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.
-
Nuclear interactions and net-proton number fluctuations in heavy ion collisions at the SIS18 accelerator
(2018)
-
Jan Steinheimer
Yongjia Wang
Ayon Mukherjee
Yunxiao Ye
Chenchen Guo
Qingfeng Li
Horst Stöcker
- The effect of nuclear interactions on measurable net-proton number fluctuations in heavy ion collisions at the SIS18/GSI accelerator is investigated. The state of the art UrQMD model including interaction potentials is employed. It is found that the nuclear forces enhance the baryon number cumulants, as predicted from grand canonical thermodynamical models. The effect however is smeared out for proton number fluctuations due to iso-spin randomization and global baryon number conservation, which decreases the cumulant ratios. For a rapidity acceptance window larger than Δy > 0.4 the effects of global baryon number conservation dominate and all cumulant ratios are significantly smaller than 1.
-
Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential
(2017)
-
Volodymyr Vovchenko
Attila Pásztor
Zoltán Fodor
Sandor D. Katzeg
Horst Stöcker
- The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the netbaryon density at imaginary baryochemical potential – corresponding to the fugacity or virial expansion at real chemical potential – are calculated within this model, and compared with the Nt = 12 lattice data. The lattice QCD behavior of the first four Fourier coefficients up to T 185 MeV is described fairly well by an interacting HRG with a single baryon–baryon eigenvolume interaction parameter b 1 fm3, while the available lattice data on the difference χB 2 − χB 4 of baryon number susceptibilities is reproduced up to T 175 MeV.
-
Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model
(2018)
-
Volodymyr Vovchenko
Benjamin Dönigus
Horst Stöcker
- The statistical model with exact conservation of baryon number, electric charge, and strangeness – the Canonical Statistical Model (CSM) – is used to analyze the dependence of yields of light nuclei at midrapidity on charged pion multiplicity at the LHC. The CSM calculations are performed assuming baryon-symmetric matter, using the recently developed Thermal-FIST package. The light nuclei-to-proton yield ratios show a monotonic increase with charged pion multiplicity, with a saturation at the corresponding grand-canonical values in the high-multiplicity limit, in good qualitative agreement with the experimental data measured by the ALICE collaboration in pp and Pb–Pb collisions at different centralities and energies. Comparison with experimental data at low multiplicities shows that exact conservation of charges across more than one unit of rapidity and/or a chemical freeze-out temperature which decreases with the charged pion multiplicity improves agreement with the data.
-
Neutron-star-merger equation of state
(2019)
-
Veronica Dexheimer
Constantinos Constantinou
Elias R. Most
Ludwig Jens Papenfort
Matthias Hanauske
Stefan Schramm
Horst Stöcker
Luciano Rezzolla
- In this work, we discuss the dense matter equation of state (EOS) for the extreme range of conditions encountered in neutron stars and their mergers. The calculation of the properties of such an EOS involves modeling different degrees of freedom (such as nuclei, nucleons, hyperons, and quarks), taking into account different symmetries, and including finite density and temperature effects in a thermodynamically consistent manner. We begin by addressing subnuclear matter consisting of nucleons and a small admixture of light nuclei in the context of the excluded volume approach. We then turn our attention to supranuclear homogeneous matter as described by the Chiral Mean Field (CMF) formalism. Finally, we present results from realistic neutron-star-merger simulations performed using the CMF model that predict signatures for deconfinement to quark matter in gravitational wave signals.
-
Flow allocation in meshed AC-DC electricity grids
(2020)
-
Fabian Hofmann
Markus Schlott
Alexander Kies
Horst Stöcker
- In power systems, flow allocation (FA) methods enable to allocate the usage and costs of the transmission grid to each single market participant. Based on predefined assumptions, the power flow is split into isolated generator-specific or producer-specific sub-flows. Two prominent FA methods, Marginal Participation (MP) and Equivalent Bilateral Exchanges (EBEs), build upon the linearized power flow and thus on the Power Transfer Distribution Factors (PTDFs). Despite their intuitive and computationally efficient concepts, they are restricted to networks with passive transmission elements only. As soon as a significant number of controllable transmission elements, such as high-voltage direct current (HVDC) lines, operate in the system, they lose their applicability. This work reformulates the two methods in terms of Virtual Injection Patterns (VIPs), which allows one to efficiently introduce a shift parameter q to tune contributions of net sources and net sinks in the network. In this work, major properties and differences in the methods are pointed out, and it is shown how the MP and EBE algorithms can be applied to generic meshed AC-DC electricity grids: by introducing a pseudo-impedance ω¯ , which reflects the operational state of controllable elements and allows one to extend the PTDF matrix under the assumption of knowing the current flow in the system. Basic properties from graph theory are used to solve for the pseudo-impedance in dependence of the position within the network. This directly enables, e.g., HVDC lines to be considered in the MP and EBE algorithms. The extended methods are applied to a low-carbon European network model (PyPSA-EUR) with a spatial resolution of 181 nodes and an 18% transmission expansion compared to today’s total transmission capacity volume. The allocations of MP and EBE show that countries with high wind potentials profit most from the transmission grid expansion. Based on the average usage of transmission system expansion, a method of distributing operational and capital expenditures is proposed. In addition, it is shown how injections from renewable resources strongly drive country-to-country allocations and thus cross-border electricity flows.
-
Neutron star mergers: Probing the eos of hot, dense matter by gravitational waves
(2019)
-
Matthias Hanauske
Jan Steinheimer-Froschauer
Anton Motornenko
Volodymyr Vovchenko
Luke Bovard
Elias Roland Most
Ludwig Jens Papenfort
Stefan Schramm
Horst Stöcker
- Gravitational waves, electromagnetic radiation, and the emission of high energy particles probe the phase structure of the equation of state of dense matter produced at the crossroad of the closely related relativistic collisions of heavy ions and of binary neutron stars mergers. 3 + 1 dimensional special- and general relativistic hydrodynamic simulation studies reveal a unique window of opportunity to observe phase transitions in compressed baryon matter by laboratory based experiments and by astrophysical multimessenger observations. The astrophysical consequences of a hadron-quark phase transition in the interior of a compact star will be focused within this article. Especially with a future detection of the post-merger gravitational wave emission emanated from a binary neutron star merger event, it would be possible to explore the phase structure of quantum chromodynamics. The astrophysical observables of a hadron-quark phase transition in a single compact star system and binary hybrid star merger scenario will be summarized within this article. The FAIR facility at GSI Helmholtzzentrum allows one to study the universe in the laboratory, and several astrophysical signatures of the quark-gluon plasma have been found in relativistic collisions of heavy ions and will be explored in future experiments.