18 search hits
-
Statistical coalescence model analysis of J / psi production in Pb + Pb collisions at 158 A GeV
(2001)
-
Andriy P. Kostyuk
Mark I. Gorenstein
Horst Stöcker
Walter Greiner
- Production of J/psi mesons in heavy ion collisions is considered within the statistical coalescence model. The model is in agreement with the experi- mental data of the NA50 Collaboration for Pb+Pb collisions at 158 A·GeV in a wide centrality range, including the so called anomalous suppression domain. The model description of the J/ psi data requires, however, strong enhancement of the open charm production in central Pb+Pb collisions. This model prediction may be checked in the future SPS runs.
-
Statistical coalescence model with exact charm conservation
(2001)
-
Mark I. Gorenstein
Andriy P. Kostyuk
Horst Stöcker
Walter Greiner
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.
-
Hydrodynamic models for heavy ion collisions, and beyond
(2001)
-
Adrian Dumitru
Jörg Brachmann
Eduardo S. Fraga
Walter Greiner
Andrew D. Jackson
Jonathan T. Lenaghan
Ove Scavenius
Horst Stöcker
- A generic property of a first-order phase transition in equilibrium, and in the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the mixed phase . A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies < 40A GeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Experimental data could soon provide essential information on the dynamics of the phase transition.
-
Strange quark stars within the Nambu-Jona-Lasinio model
(2001)
-
Matthias Hanauske
Leonid M. Satarov
Igor N. Mishustin
Horst Stöcker
Walter Greiner
- We investigate the properties of charge neutral equilibrium cold quark matter within the Nambu Jona-Lasinio model. The calculations are carried out for di erent ratios of coupling constants characterizing the vector and scalar 4 fermion interaction, xi = GV /GS. It is shown that for xi < 0.4 matter is self bound and for xi < 0.65 it has a first order phase transition of the liquid gas type. The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and electric charge. The characteristics of the quark stars are calculated for xi = 0, 0.5 and 1. It is found that the phase transition leads to a strong density variation at the surface of these stars. For xi = 1 the properties of quark stars show behaviors typical for neutron stars. At >< 0.4 the stars near to the maximum mass have a large admixture of strange quarks in their interiors. PACS number: 14.65.-q, 26.60.+c, 97.10.-q
-
Open and hidden charm production in heavy ion collisions at ultrarelativistic energies
(2001)
-
Mark I. Gorenstein
Andriy P. Kostyuk
Larry D. McLerran
Horst Stöcker
Walter Greiner
- We consider the production of the open charm and J/psi mesons in heavy ion collisions at BNL RHIC. We discuss several recently developed pictures for J/psi production and argue that a measurement at RHIC energies is crucial for disentangling these di erent descriptions.
-
J / psi suppression and enhancement in Au + Au collisions at the BNL RHIC
(2001)
-
Mark I. Gorenstein
Andriy P. Kostyuk
Horst Stöcker
Walter Greiner
- We consider the production of the J/psi mesons in heavy ion collisions at RHIC energies in the statistical coalescence model with an exact (canonical ensemble) charm conservation. The cc quark pairs are assumed to be created in the primary hard parton collisions, but the formation of the open and hidden charm particles takes place at the hadronization stage and follows the prescription of statistical mechanics. The dependence of the J/psi production on both the number of nucleon participants and the collision energy is studied. The model predicts the J/psi suppression for low energies, whereas at the highest RHIC energy the model reveals the J/psi enhancement.
-
Damping scales of neutralino cold dark matter
(2001)
-
Stefan Hofmann
Dominik J. Schwarz
Horst Stöcker
- The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark matter (CDM) has a sharp cut-off due to two damping mechanisms: collisional damping during the kinetic decoupling of the neutralinos at about 30 MeV (for typical neutralino and sfermion masses) and free streaming after last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling temperature by one order of magnitude. The cut-off in the primordial spectrum defines a minimal mass for CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravitationally bound neutralino clouds have to have masses above 10 7M . PACS numbers: 14.80.Ly, 98.35.Ce, 98.80.-k, 98.80.Cq
-
Properties of dense strange hadronic matter with quark degrees of freedom
(2001)
-
Ismail A. I. Zakout
Henry R. Jaqaman
Horst Stöcker
Walter Greiner
- The properties of strange hadronic matter are studied in the context of the modified quark-meson coupling model using two substantially di erent sets of hyperon-hyperon (Y Y ) interactions. The first set is based on the Nijmegen hard core potential model D with slightly attractive Y Y interactions. The second potential set is based on the recent SU(3) extension of the Nijmegen soft-core potential NSC97 with strongly attractive Y Y interactions which may allow for deeply bound hypernuclear matter. The results show that, for the first potential set, the hyperon does not appear at all in the bulk at any baryon density and for all strangeness fractions. The binding energy curves of the resulting N system vary smoothly with density and the system is stable (or metastable if we include the weak force). However, the situation is drastically changed when using the second set where the hyperons appear in the system at large baryon densities above a critical strangeness fraction. We find strange hadronic matter undergoes a first order phase transition from a N system to a N for strangeness fractions fS > 1.2 and baryonic densities exceeding twice ordinary nuclear matter density. Furthermore, it is found that the system built of N is deeply bound. This phase transition a ects significantly the equation of state which becomes much softer and a substantial drop in energy density and pressure are detected as the phase transition takes place. PACS:21.65.+f, 24.85.+p, 12.39Ba
-
Microscopic colored quark dynamics in the soft nonperturbative regime : description of hadron formation in relativistic S+Au collisions at CERN
(2001)
-
Stefan Scherer
Markus Hofmann
Marcus Bleicher
Ludwig Neise
Horst Stöcker
Walter Greiner
- The quark-molecular-dynamics model is used to study microscopically the dynamics of the coloured quark phase and the subsequent hadron formation in relativistic S+Au collisions at the CERN-SPS. Particle spectra and hadron ratios are compared to both data and the results of hadronic transport calculations. The non-equilibrium dynamics of hadronization and the loss of correlation among quarks are studied.
-
Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model
(2001)
-
Christian Beckmann
Panajotis Papazoglou
Detlef Zschiesche
Stefan Schramm
Horst Stöcker
Walter Greiner
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.