### Refine

#### Year of publication

- 2004 (15) (remove)

#### Keywords

- Antiteilchen (1)
- Chemical equilibration (1)
- Chemische Gleichgewichtherstellung (1)
- Dichte (1)
- Elektron (1)
- Gyromagnetic Moment (1)
- Kollision (1)
- Meson production (1)
- Particle and resonance production (1)
- Produktion von pentaquark (1)

#### Institute

- Physik (15) (remove)

- Review of QGP signatures - ideas versus observables (2004)
- We investigate hadron production and transverse hadron spectra in nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (UrQMD and HSD) based on quark, diquark, string and hadronic degrees of freedom. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the ’kink’) is described well by both approaches without involving a phase transition. However, the maximum in the K+ p+ ratio at 20 to 30 A·GeV (the ’horn’) is missed by ~ 40%. Also, at energies above ~5 A·GeV, the measured K± mT-spectra have a larger inverse slope than expected from the models. Thus the pressure generated by hadronic interactions in the transport models at high energies is too low. This finding suggests that the additional pressure - as expected from lattice QCD at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central heavy-ion collisions. Finally, we discuss the emergence of density perturbations in a first-order phase transition and why they might affect relative hadron multiplicities, collective flow, and hadron mean-free paths at decoupling. A minimum in the collective flow v2 excitation function was discovered experimentally at 40 A·GeV - such a behavior has been predicted long ago as signature for a first order phase transition.

- Kaons and antikaons in hot and dense hadronic matter (2004)
- Abstract: The medium modification of kaon and antikaon masses, compatible with low energy KN scattering data, are studied in a chiral SU(3) model. The mutual interactions with baryons in hot hadronic matter and the e ects from the baryonic Dirac sea on the K( ¯K ) masses are examined. The in-medium masses from the chiral SU(3) e ective model are compared to those from chiral perturbation theory. Furthermore, the influence of these in-medium e ects on kaon rapidity distributions and transverse energy spectra as well as the K, ¯K flow pattern in heavy-ion collision experiments at 1.5 to 2 A·GeV are investigated within the HSD transport approach. Detailed predictions on the transverse momentum and rapidity dependence of directed flow v1 and the elliptic flow v2 are provided for Ni+Ni at 1.93 A·GeV within the various models, that can be used to determine the in-medium K± properties from the experimental side in the near future.

- Production of pentaquark states in pp collisions within the microcanonical ensemble (2004)
- The microcanonical statistical approach is applied to study the production of pentaquark states in pp collisions. We predict the average multiplicity and average transverse momentum of Theta+(1540) and Xi(1860) and their antiparticles at different energies.

- Density perturbations in heavy- ion collisions below the critical point (2004)
- Universality arguments suggest that the chiral phase transition for two massless quark flavors is second-order at baryon-chemical potential µB = 0 [1], which then becomes a crossover for small quark masses.

- Impact of baryon resonances on the chiral phase transition at finite temperature and density (2004)
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.

- Antibaryons bound in nuclei (2004)
- We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (B = p, , etc.). The properties of such systems are described within the relativistic mean field model by employing G parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4He to 208Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable e ects remain even after the antibaryon coupling constants are reduced by factor 3 4 compared to G parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q values, the in medium annihilation rates should be strongly suppressed leading to relatively long lived antibaryon nucleus systems. Multi nucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound B + A systems in pA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing multi quark antiquark clusters is discussed. PACS numbers: 25.43.+t, 21.10.-k, 21.30.Fe, 21.80.+a

- Chemical equilibration due to heavy Hagedorn states (2004)
- A scenario of heavy resonances, called massive Hagedorn states, is proposed which exhibits a fast (t H 1 fm/c) chemical equilibration of (strange) baryons and anti-baryons at the QCD critical temperature Tc. For relativistic heavy ion collisions this scenario predicts that hadronization is followed by a brief expansion phase during which the equilibration rate is higher than the expansion rate, so that baryons and antibaryons reach chemical equilibrium before chemical freeze-out occurs. PACS-Nr.: 12.38.Mh

- Collective flow signals the quark gluon plasma (2004)
- A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A·GeV: here the hydrodynamic model has predicted the collapse of the v1-flow and of the v2-flow at 10 A·GeV; at 40 A·GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as potential evidence for a first order phase transition at high baryon density B. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain < 30% of the observed elliptic flow, v2, for pT > 2 GeV/c. This is interpreted as evidence for the production of superdense matter at RHIC with initial pressure far above hadronic pressure, p > 1 GeV/fm3. We suggest that the fluctuations in the flow, v1 and v2, should be measured in future since ideal hydrodynamics predicts that they are larger than 50 % due to initial state fluctuations. Furthermore, the QGP coe cient of viscosity may be determined experimentally from the fluctuations observed. The connection of v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the awayside jet suppression can only partially (< 50%) be due to hadronic rescattering. We, finally, propose upgrades and second generation experiments at RHIC which inspect the first order phase transition in the fragmentation region, i.e. at µB 400 MeV (y 4 5), where the collapse of the proton flow should be seen in analogy to the 40 A·GeV data. The study of Jet-Wake-riding potentials and Bow shocks caused by jets in the QGP formed at RHIC can give further information on the equation of state (EoS) and transport coe cients of the Quark Gluon Plasma (QGP).

- Signatures of a minimal length scale in high precision experiments (2004)
- We discuss modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scaleMf . First-order deviations from the theoretical standard model value for g-2 due to these String Theory-motivated e ects are derived. Constraints for the new fundamental scale Mf are given.

- Signatures of large extra dimensions (2004)
- String theory suggests modifications of our spacetime such as extra dimensions and the existence of a mininal length scale. In models with addidional dimensions, the Planck scale can be lowered to values accessible by future colliders. Effective theories which extend beyond the standart-model by including extra dimensions and a minimal length allow computation of observables and can be used to make testable predictions. Expected effects that arise within these models are the production of gravitons and black holes. Furthermore, the Planck-length is a lower bound to the possible resolution of spacetime which might be reached soon.