19 search hits
-
GEANT4 : a simulation toolkit
(2003)
-
S. Agostinelli
Dennis Dean Dietrich
Walter Greiner
Kerstin Anja Paech
Stefan Scherer
Horst Stöcker
Henning Weber
Detlef Zschiesche
et al.
Geant4 Collaboration
- Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 23
-
Open charm and charmonium production at RHIC
(2003)
-
Elena L. Bratkovskaya
Wolfgang Cassing
Horst Stöcker
- We calculate open charm and charmonium production in Au + Au reac- tions at ps = 200 GeV within the hadron-string dynamics (HSD) transport approach employing open charm cross sections from pN and N reactions that are fitted to results from PYTHIA and scaled in magnitude to the available experimental data. Charmonium dissociation with nucleons and formed mesons to open charm (D + ¯D pairs) is included dynamically. The comover dissociation cross sections are described by a simple phase-space model including a single free parameter, i.e. an interaction strength M2 0 , that is fitted to the J/ suppression data for Pb + Pb collisions at SPS energies. As a novel feature we implement the backward channels for char- monium reproduction by D ¯D channels employing detailed balance. From our dynamical calculations we find that the charmonium recreation is com- parable to the dissociation by comoving mesons. This leads to the final result that the total J/ suppression at ps = 200 GeV as a function of centrality is slightly less than the suppression seen at SPS energies by the NA50 Collaboration, where the comover dissociation is substantial and the backward channels play no role. Furthermore, even in case that all di- rectly produced J/ mesons dissociate immediately (or are not formed as a mesonic state), a sizeable amount of charmonia is found asymptotically due to the D + ! J/ + meson channels in central collisions of Au + Au at ps = 200 GeV which, however, is lower than the J/ yield expected from f pp collis ns.
-
In-medium vector meson masses in a chiral SU(3) model
(2003)
-
Detlef Zschiesche
Amruta Mishra
Stefan Schramm
Horst Stöcker
Walter Greiner
- A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the e ects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation e ects from the nucleon sector and is not observed in the mean field approximation.
-
Hydrodynamics near a chiral critical point
(2003)
-
Kerstin Paech
Horst Stöcker
Adrian Dumitru
- We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to non-equilibrium dynamics of the long wavelength (classical) modes of the chiral condensate. We solve the equations of motion numerically in 3+1 spacetime dimensions. Starting the evolution at high temperature in the symmetric phase, we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its critical endpoint. For those cases, we predict the behavior of the azimuthal momentum asymmetry for highenergy heavy-ion collisions at nonzero impact parameter.
-
Charm coalescence at relativistic energies
(2003)
-
Andriy P. Kostyuk
Mark I. Gorenstein
Horst Stöcker
Walter Greiner
- The J/psi yield at midrapidity at the top RHIC (relativistic heavy ion collider) energy is calculated within the statistical coalescence model, which assumes charmonium formation at the late stage of the reaction from the charm quarks and antiquarks created earlier in hard parton collisions. The results are compared to the new PHENIX data and to predictions of the standard models, which assume formation of charmonia exclusively at the initial stage of the reaction and their subsequent suppression. Two versions of the suppression scenario are considered. One of them assumes gradual charmonium suppression by comovers, while the other one supposes that the suppression sets in abruptly due to quark-gluon plasma formation. Surprisingly, both versions give very similar results. In contrast, the statistical coalescence model predicts a few times larger J/psi yield in the most central collisions.
-
A fast hybrid approach to air shower simulations and applications
(2003)
-
Hans-Joachim Drescher
Glennys R. Farrar
Marcus Bleicher
Manuel Reiter
Sven Soff
Horst Stöcker
- The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of efficient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to reproduce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite efficient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.
-
Model dependence of lateral distribution functions of high energy cosmic ray air showers
(2003)
-
Hans-Joachim Drescher
Marcus Bleicher
Sven Soff
Horst Stöcker
- The influence of high and low energy hadronic models on lateral distribution functions of cosmic ray air showers for Auger energies is explored. A large variety of presently used high and low energy hadron interaction models are analysed and the resulting lateral distribution functions are compared. We show that the slope depends on both the high and low energy hadronic model used. The models are confronted with available hadron-nucleus data from accelerator experiments.
-
Color screening and the suppression of the charmonium state yield in nuclear reactions
(2003)
-
Lars Gerland
Leonid Frankfurt
Mark Strikman
Horst Stöcker
- We discuss the new data for the production of the psi meson in pA collisions at 450 GeV at CERNSPS (of the NA50-collaboration) [1]. We extract from the CERN data sigma(psi'N) 8 mb under the assumption that the psi is produced as a result of the space-time evolution of a point-like c¯c pair which expands with time to the full size of the charmonium state. In the analysis we assume the existence of a relationship between the distribution of color in a hadron and the cross section of its interaction with a nucleon. However, our result is rather sensitive to the pattern of the expansion of the wave packet and significantly larger values of sigma(psi'N)are not ruled out by the data. We show that recent CERN data confirm the suggestion of ref. [2] that color fluctuations of the strengths in charmonium-nucleon interaction are the major source of suppression of the J/psi yield as observed at CERN in both pA and AA collisions.
-
Mass modification of D-meson in hot hadronic matter
(2003)
-
Amruta Mishra
Elena L. Bratkovskaya
Jürgen Schaffner-Bielich
Stefan Schramm
Horst Stöcker
- We evaluate the in-medium D and -meson masses in hot hadronic matter induced by interactions with the light hadron sector described in a chiral SU(3) model. The e ective Lagrangian approach is generalized to SU(4) to include charmed mesons. We find that the D-mass drops substantially at finite temperatures and densities, which open the channels of the decay of the charmonium states ( 2, c, J/ ) to D pairs in the thermal medium. The e ects of vacuum polarisations from the baryon sector on the medium modification of the D-meson mass relative to those obtained in the mean field approximation are investigated. The results of the present work are compared to calculations based on the QCD sum-rule approach, the quark-meson coupling model, chiral perturbation theory, as well as to studies of quarkonium dissociation using heavy quark potential from lattice QCD.
-
Effects of Dirac sea polarization on hadronic properties : a Chiral SU(3) approach
(2003)
-
Amruta Mishra
K. Balazs
Detlef Zschiesche
Stefan Schramm
Horst Stöcker
Walter Greiner
- Abstract: The e ect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The e ect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This e ect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange ( ) and the strange ( ) scalar fields.