545 search hits
-
Kleingedrucktes mit großem Effekt
(2020)
-
Michael Huth
Lukas Keller
Harald Plank
Robert Winkler
- Der 3D‐Druck von geometrisch komplexen Nanostrukturen ist auf dem Weg zu ersten Anwendungen. Die Auswahl an geeigneten Materialien ermöglicht metallische, halbleitende, isolierende, supraleitende und exotische magnetische Eigenschaften. Das 3D‐FEBID‐Verfahren schreibt mit dem Elektronenstrahl eines Raster‐Elektronenmikroskops wie mit einem Nanostift. Das Material wird als Gasstrom von Precursor‐Molekülen über eine Hohlnadel zugeführt. Der Elektronenstrahl ermöglicht die hochlokale Fragmentierung dieser Moleküle, die meist metallische Zielatome enthalten. Die lokale Verweildauer des Strahls steuert den Strukturaufbau in der Vertikalen, während seine seitliche Bewegung zu geneigten, freistehenden Strukturen führt. Eine Herausforderung ist die definierte Strahlsteuerung, um ein CAD‐Modell möglichst präzise in ein reales 3D‐Nanoobjekt zu überführen. Für die Zukunft soll eine simulationsgestützte Software zur Steuerung des Elektronenstrahls auch Laien die Anwendung erleichtern. 3D‐FEBID ist bereits heute ein zuverlässiges und in vielerlei Hinsicht einzigartiges Verfahren zur Direktabscheidung funktionaler Nanostrukturen.
-
Ordnung des Fachbereichs Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main für den Masterstudiengang Physik mit dem Abschluss "Master of Science (M.Sc.)" vom 20. Mai 2020 : genehmigt vom Präsidium am 30. Juni 2020
(2020)
- Aufgrund der §§ 20, 44 Abs. 1 Nr. 1 des Hessischen Hochschulgesetzes in der Fassung vom 14. Dezember 2009, zuletzt geändert durch Gesetz vom 27. Mai 2013, hat der Fachbereichsrat des Fachbereichs Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main am 20. Mai 2020 die folgende Ordnung für den Masterstudiengang Physik beschlossen. Diese Ordnung hat das Präsidium der Johann Wolfgang Goethe-Universität gemäß § 37 Abs. 5 Hessisches Hochschulgesetz am 30. Juni 2020 genehmigt. Sie wird hiermit bekannt gemacht.
-
Ordnung des Fachbereichs Physik der Johann Wolfgang Goethe-Universität
Frankfurt am Main für den Bachelorstudiengang Physik mit dem Abschluss
"Bachelor of Science (B.Sc.)" vom 20. Mai 2020 ; genehmigt vom Präsidium am 30. Juni 2020
(2020)
- Aufgrund der §§ 20, 44 Abs. 1 Nr. 1 des Hessischen Hochschulgesetzes in der Fassung vom 14. Dezember 2009, zuletzt geändert durch Gesetz vom 18. Dezember 2017, hat der Fachbereichsrat des Fachbereichs Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main am 20. Mai 2020 die folgende Ordnung für den Bachelorstudiengang Physik beschlossen. Diese Ordnung hat das Präsidium der Johann Wolfgang GoetheUniversität gemäß § 37 Abs. 5 Hessisches Hochschulgesetz am 30. Juni 2020 genehmigt. Sie wird hiermit bekannt gemacht.
-
Ordnung der Fachbereiche Geowissenschaften/Geographie und Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main für den Bachelorstudiengang Meteorologie mit dem Abschluss "Bachelor of Science (B.Sc.)" vom 20. Mai 2020 : genehmigt vom Präsidium am 30. Juni 2020
(2020)
-
Angeregt und Abgefragt: Moleküle im Reaktionsmikroskop : Zerfall in Femtosekunden
(2020)
-
Gregor Kastirke
- Im Rahmen dieser Arbeit wurde ein Reaktionsmikroskop (REMI) nach dem Messprinzip COLTRIMS (Cold Target Recoil Ion Momentum Spectrometry) neu konstruiert und aufgebaut. Die Leistungsfähigkeit des Experimentaufbaus konnte sowohl in diversen Testreihen als auch anschließend unter realen Messbedingungen an der Synchrotronstrahlungsanlage SOLEIL und am endgültigen Bestimmungsort SQS-Instrument (Small Quantum Systems) des Freie-Elektronen-Lasers European XFEL (X-ray free-electron laser) eindrucksvoll unter Beweis gestellt werden.
Mit der Experimentiertechnik COLTRIMS ist es möglich, alle geladenen Fragmente einer Wechselwirkung eines Projektilteilchens mit einem Targetteilchen mittels zweier orts- und zeitauflösender Detektoren nachzuweisen. In einem Vakuumrezipienten wird die als Molekularstrahl präparierte Targetsubstanz inmitten der Hauptkammer zentral mit einem Projektilstrahl (z.B. des XFEL) zum Überlapp gebracht, sodass dort eine Wechselwirkung stattfinden kann. Bei den entstehenden Fragmenten handelt es sich um positiv geladene Ionen sowie negative geladene Elektronen. Elektrische Felder, erzeugt durch eine Spektrometer-Einheit, sowie durch Helmholtz-Spulen erzeugte magnetische Felder ermöglichen es, die geladenen Fragmente in Richtung der Detektoren zu lenken. Die Orts- und Zeitmessung eines einzelnen Teilchens (z.B. eines Ions) findet in Koinzidenz mit den anderen Teilchen (z.B. weiteren Ionen bzw. Elektronen) statt. Mit dieser Messmethode können die Impulsvektoren und Ladungszustände aller geladenen Fragmente in Koinzidenz gemessen werden. Da hierbei die geometrische Anordnung der einzelnen Komponenten für die Leistungsfähigkeit des Experiments eine entscheidende Rolle spielt, mussten bei der Neukonstruktion des COLTRIMS-Apparates für den Einsatz an einem Freie-Elektronen-Laser (FEL) einige Rahmenbedingungen erfüllt werden. Besonders wurden die hohen Vakuumvoraussetzungen an den Experimentaufbau aufgrund der enormen Lichtintensität eines FEL beachtet. Das Zusammenspiel der vielen Einzelkomponenten konnte zunächst in mehreren Testreihen überprüft werden. Unter anderem durch Variation der Vakuumbauteile in Material und Beschaffenheit konnten die zuvor ermittelten Vorgaben schließlich erreicht werden. Das neu konstruierte Target-Präparationssystem zur Erzeugung molekularer Gasstrahlen erlaubt nun den Einsatz von bis zu vier unterschiedlich dimensionierten, differentiell gepumpten Stufen. Zudem wurden hochpräzise Piezo-Aktuatoren verbaut, welche die Bewegung von Blenden im Vakuum erlauben, wodurch eine variable Einstellung des lokalen Targetdrucks ermöglicht wird. Die Anpassung der elektrischen Felder des Spektrometers für ein jeweiliges Experiment wurde mittels Simulationen der Teilchentrajektorien, Teilchenflugzeiten sowie der Detektorauflösung durchgeführt.
Da die in dieser Arbeit besprochenen Messungen und Ergebnisse die Wechselwirkungsprozesse von Röntgenstrahlung bzw. Synchrotronstrahlung mit Materie thematisieren, wird die Erzeugung von Synchrotronstrahlung sowohl in Kreisbeschleunigern als auch in den modernen Freie-Elektronen-Lasern (FEL) erklärt und hergeleitet. Der im Röntgenbereich arbeitende Freie-Elektronen-Laser European XFEL, welcher u.A. als Strahlungsquelle für die hier gezeigten Experimente diente, ist eine von derzeit noch wenigen Anlagen ihrer Art weltweit. Seine Lichtintensität in diesem Wellenlängenbereich liegt bis zu acht Größenordnungen über den bisher verwendeten Anlagen für Synchrotronstrahlung.
Beim ersten Einsatz der neuen Apparatur an der Synchrotronstrahlungsanlage SOLEIL wurde der ultraschnelle Dissoziationsprozess von Chlormethan (CH3Cl) untersucht. Während des Zerfallsprozesses nach Anregung durch Röntgenstrahlung werden hochenergetische Auger-Elektronen emittiert, welche in Koinzidenz mit verschiedenen Molekülfragmenten nachgewiesen wurden. Durch den Zerfallsmechanismus der ultraschnellen Dissoziation wird die Auger-Elektronenemission nach resonanter Molekülanregung während der Dissoziation des Moleküls beschrieben. Die kinetische Energie des Auger-Elektrons ist dabei abhängig von seinem Emissionszeitpunkt. Somit können die gemessenen Auger-Elektronen ein „Standbild“ der zeitlichen Abfolge des Dissoziationsprozesses liefern.
Es wird eine detaillierte Beschreibung der Datenanalyse vorgenommen, welche aus Kalibrationsmessungen und einer Interpretation der Messdaten besteht. Die abschließende Betrachtung besteht in der Darstellung der Elektronenemissionswinkelverteilungen im molekülfesten Koordinatensystem. Die Winkelverteilung der Auger-Elektronen wird am Anfang der Dissoziation vom umgebenden Molekül- potential beeinflusst und zeigt deutliche Strukturen entlang der Bindungsachse. Entfernen sich die Bindungspartner voneinander und das Auger-Elektron wird währenddessen emittiert, so verschwinden diese Strukturen zunehmend und eine Vorzugsemissionsrichtung senkrecht zur Molekülachse wird sichtbar.
Die Analyse der Messdaten zur Untersuchung von Multiphotonen-Ionisation an Sauerstoff-Molekülen am Freie-Elektronen-Laser European XFEL ermöglichte unter anderem die Beobachtung „hohler Moleküle“, also Systemen mit Doppelinnerschalen- Vakanzen. Solche Zustände können vor allem durch die sequentielle Absorption zweier Photonen entstehen, wobei die hierbei nötige Photonendichte nur von FEL- Anlagen bereit gestellt werden kann. Hier konnte das Ziel erreicht werden, erstmalig die Emissionswinkelverteilungen der Photoelektronen von mehrfach ionisierten Sauerstoff-Molekülen (O+/O3+-Aufbruchskanal) als Folge der ablaufenden Mechanismen femtosekundengenau zu beobachten. Hierzu wurde ein vereinfachtes Schema der verschiedenen Zerfallsschritte erstellt und schließlich ermittelt, dass der Zerfall durch eine PAPA-Sequenz beschrieben werden kann. Bei dieser handelt es sich um die zweimalige Abfolge von Photoionisation und Auger-Zerfall. Somit werden vier positive Ladungen im Molekül erzeugt. Das zweite Photon des XFEL wird dabei während der Dissoziation der sich Coulomb-abstoßenden Fragmente absorbiert, weshalb es sich um einen zweistufigen Prozess aus Anrege- und Abfrage- Schritt (Pump-Probe) handelt. Schlussendlich gelang zudem der Nachweis von Doppelinnerschalen-Vakanzen im Sauerstoff-Molekül nach Selektion des O2+/O2+- Aufbruchkanals. Hierfür konnten die beiden Möglichkeiten einer zweiseitigen oder einseitigen Doppelinnerschalen-Vakanz getrennt betrachtet werden und ebenfalls erstmalig das Verhalten der Elektronenemission dieser beiden Zustände verglichen werden.
-
Entwicklung und Test von drei MCP-basierten Detektoren für die Atom- und Molekülphysik
(2020)
-
Christian Sören Janke
- Mit der COLTRIMS-Technik können immer kompliziertere Reaktionen untersucht werden, dabei steigt aber die Zahl der zu detektierenden Reaktionsfragmente. Der Nachweis von Ionen ist üblicherweise gut möglich, da die entsprechenden Flugzeiten groß sind im Vergleich zur Totzeit der benutzten Detektoren. Elektronen hingegen sind sehr leicht und erreichen den Detektor innerhalb von wenigen 10 ns. Aktuelle Detektoren erlauben aber nur den Nachweis weniger Elektronen und es werden somit neue Detektoren benötigt, um alle Teilchen nachzuweisen. Ziel dieser Arbeit war es also, einen Detektor zu entwickeln, der dies erreicht.
Zu Beginn dieser Monografie wird die COLTRIMS-Technik vorgestellt. Die Experimente mit dieser Messmethode finden hauptsächlich mit einer Laufzeitanode statt. Diese stößt aber bei dem Nachweis von mehreren Teilchen an ihre Grenzen und manche Experimente können nur unvollständig analysiert werden.
Damit ein neuer Detektor entwickelt werden kann, muss erst verstanden werden, wie die zu detektierenden Teilchen/Signale entstehen und wie ihre Eigenschaften sind. Aus diesem Grund wird das Sekundärteilchen-erzeugende MCP ausführlich vorgestellt.
Weiterhin gibt diese Arbeit einen umfassenden Überblick über bereits realisierte Anoden. Verschiedene Repräsentanten der fünf Anodenarten (Flächen-, Streifen-/Pixel-, Laufzeit-, Kamera-, sowie Halbleiter-Anode) werden vorgestellt und bewertet.
Mit diesem Wissen konnten drei Ansätze für neue Anoden entwickelt, designt, produziert, getestet und bewertet werden. Alle neu entwickelten Anoden benutzen Leiterplatinen als Basis und werden in derselben Vakuumkammer getestet. Auch wenn die Detektionsprinzipien der drei getesteten Detektoren unterschiedlich sind, so verläuft die Auskopplung, Verarbeitung und Digitalisierung der Signale nach dem gleichen Schema. Außerdem wurden im Rahmen dieser Arbeit diverse Algorithmen entwickelt und programmiert, mit deren Hilfe die Signalauswertung und Positionsbestimmung erfolgt.
Das dritte Kapitel beschreibt die neu entwickelte Draht-Harfen-Anode. Dieser Detektor besteht aus vielen kurzen Drähten die parallel auf Rahmen aus Leiterplatinen gespannt werden. Aus dieser Anode ließ sich im Rahmen dieser Arbeit aber kein funktionsfähiger Detektor entwickeln und es wird empfohlen, diesen Ansatz nicht weiterzuverfolgen.
Im Kapitel über die Pixel-Anode mit Streifenauslese wird ein Ansatz vorgestellt, bei dem die Elektronenwolke von einem Muster aus leitenden Rauten absorbiert wird. Es wurde ein funktionsfähiger Detektor mit MAMA-Verschaltung realisiert. Die aktive Fläche ist mit einem Durchmesser von 50 mm aber zu klein. Eine große Variante der Anode ist in der realisierten Form aber nicht als Detektor geeignet.
Als dritter neuer Detektor wird die Streifen-Laufzeit-Anode beschrieben. Diese besteht aus einem rechteckigen Muster von Pixeln, die in einer Richtung über eine Zeitverzögerung ausgelesen werden. Dieser Ansatz ist sehr vielversprechend und es ließen sich nicht nur einzelne Teilchen nachweisen, sondern auch beim Aufbruch eines D2+-Moleküls konnten beide Fragmente gemessen werden.
Das letzte Kapitel befasst sich mit weiteren Konzepten, die als Detektor realisiert werden könnten.
-
Multikoinzidenzstudien zur Ionisation chiraler Moleküle in kurzen Laserpulsen
(2020)
-
Kilian Fehre
- Chiralität ist in der belebten Natur ein omnipräsentes Phänomen und beschreibt die Symmetrieeigenschaft eines Objektes, dass dieses von seinem Spiegelbild unterscheidbar ist. Die bisherigen Untersuchungen der Wechselwirkung zwischen chiralen Molekülen und Licht fokussieren sich auf das Regime der Ein- und Multiphoton-Ionisation und wird mit dieser Arbeit um Untersuchungen im Starkfeldregime erweitert. Im Rahmen dieser Arbeit wurden Experimente an einzelnen chiralen Molekülen in starken Laserfeldern vorbereitet, durchgeführt, analysiert und alle geladenen Fragmente in Koinzidenz untersucht.
Die Präsentation der Ergebnisse orientierte sich an der Reihenfolge, in der auch die Datenauswertung von Vielteilchenaufbrüchen vonstattengeht: Zunächst wurde der Dichroismus in den Photoionen (PICD) auf chirale Signale in integraler differentieller Form untersucht, dann wurde die Asymmetrien in den Elektronenverteilungen vorgestellt und abschließend die Zusammenhänge zwischen den Ionen- und Elektronenverteilungen aufgezeigt.
Kapitel 6 untersuchte die (differentielle) Ionisations- und Fragmentationswahrscheinlichkeit von verschiedenen chiralen Molekülen. Die in Kapitel 6.1 präsentierten Daten verknüpften erstmals den bereits in der Literatur diskutierten Zirkulardichroismus in den Zählraten von Photoionen (PICD) mit dem signalstärkeren differentiellen PICD in der Einfachionisation von Methyloxiran. Dissoziiert das Molekül nach der Ionisation rasch genug, gewährt der Impulsvektor des geladenen Fragments Zugang zu einer Fragmentationsachse. Durch die Auflösung nach einer Molekülachse ist der beobachtete PICD fast eine Größenordnung stärker, als der über alle Raumrichtungen integrierte.
In steigender Komplexität wurde in Kapitel 6.2 eine Fragmentation in vier Teilchen von Molekülen aus einem racemischen Gemisch von CHBrClF untersucht. Über die Auswertung eines Spatproduktes aus den Impulsvektoren konnte für jedes Molekül dessen Händigkeit bestimmt und der vollständig differentielle PICD untersucht werden. Durch das Festhalten einer Fragmentationsachse (analog zu Kapitel 6.1) konnten um einen Faktor vier stärkere PICD-Signale und durch das Auflösen nach der vollständigen Molekülorientierung die Signalstärke des PICD um einen Faktor von etwa 16 in den Bereich einiger Prozente gebracht werden. Leider übersteigt die theoretische Beschreibung dieses Prozesses den aktuellen Stand der Forschung weit. Daher kann nicht ausgeschlossen werden, dass nicht ein Beitrag zur PICD-Signalverstärkung auch aus der Dynamik der sequentiellen vielfachen Ionisation stammt.
Die untersuchte Reaktion in Kapitel 6.3 war der Fünf-Teilchenaufbruch der achiralen Ameisensäure. In der Messung aller ionischen Fragmente konnten analog zu dem vorherigen Kapitel die internen Koordinaten sowie die Orientierung des Moleküls ermittelt werden. Tatsächlich wurde von einer chiralen Fragmentation der achiralen Ameisensäure berichtet. Welches Enantiomer in der Fragmentation beobachtet wird, hängt maßgeblich von der Molekülorientierung relativ zum ionisierenden Laserpuls ab. Diese Erkenntnis könnte zu neuen Ansätzen für Laserkatalysierte enantioselektive Reaktionen führen. Darüber hinaus konnte gezeigt werden, dass die beobachtete Händigkeit des Moleküls nicht nur von seiner Orientierung, sondern auch von der Helizität des ionisierenden Laserpulses abhängt. Dieser differentielle PICD an der Ameisensäure zeigte sich neben einer sehr großen Signalstärke von über 20 % auch als sensitive Probe für die molekulare Struktur.
In Kapitel 7 wurden die Untersuchungen an den 3-dimensionalen Impulsverteilungen der Photoelektronen vorgestellt. Zunächst wird hierzu auf die allgemeine Form des Dichroismus in den Photoelektronen (PECD) im Starkfeldregime eingegangen und die vorherrschenden Symmetrien des Ionisationsregimes herausgearbeitet (Kapitel 7.1). Mit leicht steigender Komplexität konnte eine klare Verbindung zwischen der Asymmetrie in der Elektronenverteilung und dem Schicksal des zurückbleibenden molekularen Ions anhand der Einfachionisation von Methyloxiran herausgearbeitet werden (Kapitel 7.2). Dies hat eine wichtige Auswirkung auf die Nutzbarkeit des PECD im Starkfeldregime als Analysemethode für Chemie und Pharmazie: Der über alle Fragmentationskanäle integrierte PECD ist sensitiv auf die Gewichtung der Fragmente und damit auch auf beispielsweise die maximale Laserintensität. Die Daten legen nahe, dass die Abhängigkeit des PECD von dem Fragmentationskanal auf die unterschiedliche Auswahl von Subensembles molekularer Orientierungen zurückzuführen ist.
Bei Verwendung von elliptisch polarisiertem Licht treten gegenüber der zirkularen Polarisation eine Reihe neuer Effekte auf (Kapitel 7.3). Zunächst zeigt der PECD auch im Starkfeldregime eine nicht lineare Sensitivität auf den Polarisationszustand, welche sich auch als Funktion des Elektronentransversalimpulses und dem Fragmentationskanal ändert. Somit ist die Verwendung von elliptisch polarisiertem Licht bestens für die chirale Erkennung geeignet, wie inzwischen auch in der Literatur bestätigt wurde. Darüber hinaus führt die gebrochene Rotationssymmetrie bei elliptisch polarisiertem Licht zu einer Elektronenimpulsverteilung, welche selbst chiral ist: Der PECD variiert je nach Winkel φ in der Polarisationsebene, wobei die Extrema des PECD nicht mit den Maxima der Zählraten übereinstimmen. Als neue chirale Beobachtungsgröße konnten wir eine enantiosensitive und vorwärts-/rückwärtsasymmetrische Rotation der Zählratenmaxima einführen. Als abgeleitete Größe aus derselben drei-dimensionalen Elektronenverteilung ist diese Beobachtungsgröße jedoch untrennbar verknüpft mit dem ϕ-abhängigen PECD.
Kapitel 8 verknüpfte das (partielle) Wissen um die molekulare Orientierung und den PICD mit den Asymmetrien der Elektronenverteilung für die Messung der fünffach-Ionisation von Ameisensäure (Kapitel 8.1), der vierfach-Ionisation von CHBrClF (Kapitel 8.2) und der Einfachionisation von Methyloxiran (Kapitel 8.3). Im Datensatz der Ameisensäure und dem des CHBrClF zeigte die molekulare Orientierung einen größeren Einfluss auf die Asymmetrie in der Elektronenverteilung als das Enantiomer oder die Helizität des Lichtes. Diese Verknüpfung zwischen Molekülorientierung und Elektronenasymmetrie überträgt die Asymmetrien des PICD auf die Elektronenverteilung. Die Messung an Methyloxiran relativiert diesen Zusammenhang jedoch in dem dieser in dieser Stärke nur bei manchen Fragmentationskanälen auftritt. Offenbar ist die Übertragung der Asymmetrie der differentiellen Ionisationswahrscheinlichkeit nur einer der Mechanismen, welcher zu Elektronasymmetrien im Starkfeldregime führt.
-
Konstruktion oder Evolution der Zeit?
(2007)
-
Mathias Gutmann
- Zeit ist einer jener Begriffe, für die man die Augustinische Charakterisierung gelten lassen wollte, es sei klar, was sie bedeuten, solange nicht danach gefragt werde (Augustinus Confessiones Lib. XI, 17). Die Frage aber nach dem, was "Zeit" eigentlich ist, erscheint umso berechtigter, als es insbesondere die Naturwissenschaften sind, die für sich in Anspruch nehmen, hier Antworten geben zu können. Die zu erwartenden Antworten wären danach wesentlich empirischer Natur – also direkt oder indirekt experimentell gestützt und mithin Ergebnis dieser Forschung. ...
-
7. Hessische Schülerakademie Mittelstufe 2. bis 11. Juli 2017 : - Dokumentation -
(2017)
- Das Zusammentreffen zu Beginn der Sommerferien von 60 wissbegierigen und experimentierfreudigen Schülerinnen und Schülern mit einem ebensolchen Team aus Hochschullehrenden und Kulturschaffenden, versprach wie immer eine intensive und aufregende Zeit zu werden. Diese positive Erwartung wurde auch voll erfüllt und gipfelte am Gästenachmittag mit Eltern, Verwandten, Freunden und interessierten Besuchern in einen feierlich-fröhlichen Abschluss mit spannenden und auch überraschenden Werkschauen der Kurse. Ein besonderes Highlight war die großformatige Gestaltung eines Modells der BURG FÜRSTENECK als interdisziplinäres Ergebnis des Hauptkurses Mathematik und des Wahlkurses Modellbau.
-
6. Hessische Schülerakademie Mittelstufe – Jahrgangsstufen 7 bis 9 17. bis 26. Juli 2016 : Dokumentation
(2016)
- Als wir im Herbst 2015 auf den Homepages von BURG FÜRSTENECK und der Schülerakademie unsere Ausschreibung für die Akademie 2016 veröffentlichten, ahnten wir noch nicht, dass wir uns weitere Werbung mit dem jährlichen Flyer, den wir zum Jahreswechsel an die hessischen Gymnasien und Gesamtschulen mit gymnasialen Zweig versenden, hätten (fast) sparen können. Zu unserer Überraschung und großer Freude zählten wir bereits im Februar 2016 "58" Anmeldungen von Schülerinnen und Schülern. Die Werbung hat uns im Anschluss über 20 weitere Bewerbungen beschert und in die unangenehme Situation gebracht, (zu) vielen Schülerinnen und Schülern absagen bzw. sie auf das nächste Jahr vertrösten zu müssen.