Refine
Is part of the Bibliography
569 search hits
-
Remote monitoring of seismic swarms and the August 2016 seismic
crisis of Brava, Cape Verde, using array methods
(2020)
-
Carola Leva
Georg Rümpker
Ingo Wölbern
- During the first two days of August 2016 a seismic crisis occurred on Brava, Cape Verde, which – according to observations based on a local seismic network – was characterized by more than thousand volcano–seismic signals. Brava is considered an active volcanic island, although it has not experienced any historic eruptions. Seismicity significantly exceeded the usual level during the crisis. We report on results based on data from a temporary seismic–array deployment on the neighbouring island of Fogo at a distance of about 35 km. The array was in operation from October 2015 to December 2016 and recorded a total of 1343 earthquakes, 355 thereof were localized. On 1 and 2 August we observed 54 earthquakes, 25 of which could be located beneath Brava. We further evaluate the observations with regards to possible precursors to the crisis and its continuation. Our analysis shows a migration of seismicity around Brava, but no distinct precursory pattern. However, the observations suggest that similar earthquake swarms commonly occur close to Brava. The results further confirm the advantages of seismic arrays as tools for the remote monitoring of regions with limited station coverage or access.
-
From the development of an open-source energy modelling tool to its application and the creation of communities of practice: The example of OSeMOSYS
(2018)
-
Francesco Gardumi
Abhishek Shivakumar
Robbie Morrison
Constantinos Taliotis
Oliver Broad
Agnese Beltramo
Vignesh Sridharan
Mark Howells
Jonas Hörsch
Taco Niet
Youssef Almulla
Eunice Ramos
Thorsten Burandt
Gabriela Peña Balderrama
Gustavo Nikolaus Pinto de Moura
Eduardo Zepeda
Thomas Alfstad
- In the last decades, energy modelling has supported energy planning by offering insights into the dynamics between energy access, resource use, and sustainable development. Especially in recent years, there has been an attempt to strengthen the science-policy interface and increase the involvement of society in energy planning processes. This has, both in the EU and worldwide, led to the development of open-source and transparent energy modelling practices.This paper describes the role of an open-source energy modelling tool in the energy planning process and highlights its importance for society. Specifically, it describes the existence and characteristics of the relationship between developing an open-source, freely available tool and its application, dissemination and use for policy making. Using the example of the Open Source energy Modelling System (OSeMOSYS), this work focuses on practices that were established within the community and that made the framework's development and application both relevant and scientifically grounded. Keywords: Energy system modelling tool, Open-source software, Model-based public policy, Software development practice, Outreach practice
-
Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state
(2020)
-
Chara Litou
David Turner
Nico Holmstock
Jens Ceulemans
Karl Box
Edmund Kostewicz
Martin Kuentz
Rene Holm
Jennifer Dressman
- Introduction: In the development of bio-enabling formulations, innovative in vivo predictive tools to understand and predict the in vivo performance of such formulations are needed. Etravirine, a non-nucleoside reverse transcriptase inhibitor, is currently marketed as an amorphous solid dispersion (Intelence® tablets). The aims of this study were 1) to investigate and discuss the advantages of using biorelevant in vitro setups in simulating the in vivo performance of Intelence® 100 mg and 200 mg tablets, in the fed state, 2) to build a Physiologically Based Pharmacokinetic (PBPK) model by combining experimental data and literature information with the commercially available in silico software Simcyp® Simulator V17.1 (Certara UK Ltd.), and 3) to discuss the challenges when predicting the in vivo performance of an amorphous solid dispersion and identify the parameters which influence the pharmacokinetics of etravirine most.
Methods: Solubility, dissolution and transfer experiments were performed in various biorelevant media simulating the fasted and fed state environment in the gastrointestinal tract. An in silico PBPK model for healthy volunteers was developed in the Simcyp® Simulator, using in vitro results and data available from the literature as input. The impact of pre- and post-absorptive parameters on the pharmacokinetics of etravirine was investigated using simulations of various scenarios.
Results: In vitro experiments indicated a large effect of naturally occurring solubilizing agents on the solubility of etravirine. Interestingly, supersaturated concentrations of etravirine were observed over the entire duration of dissolution experiments on Intelence® tablets. Coupling the in vitro results with the PBPK model provided the opportunity to investigate two possible absorption scenarios, i.e. with or without implementation of precipitation. The results from the simulations suggested that a scenario in which etravirine does not precipitate is more representative of the in vivo data. On the post-absorptive side, it appears that the concentration dependency of the unbound fraction of etravirine in plasma has a significant effect on etravirine pharmacokinetics.
Conclusions: The present study underlines the importance of combining in vitro and in silico biopharmaceutical tools to advance our knowledge in the field of bio-enabling formulations. Future studies on other bio-enabling formulations can be used to further explore this approach to support rational formulation design as well as robust prediction of clinical outcomes.
-
More or less equality? Direct Democracy in Europe from 1990 to 2015
(2019)
-
Brigitte Geißel
Anna Krämling
Lars Paulus
- Within the last decades, western democracies have experienced a rise of inequality, with the gap between lower and upper class citizens steadily increasing and a widespread sentiment of growing inequalities also in the political sphere. Against this background, and in the context of the current “crisis of democracy”, democratic innovations such as direct democratic instruments are discussed as a very popular means to bring citizens back in. However, research on direct democracy has produced rather inconsistent results with regard to the question of which effects referenda and initiatives have on equality. Studies in this field are often limited to single countries and certain aspects of equality. Moreover, most existing studies look at the mere availability of direct democratic instruments instead of actual bills that are put to a vote. This paper aims to take a first step to fill these gaps by giving an explorative overview of the outputs of direct democratic bills on multiple equality dimensions, analyzing all national referenda and initiatives in European democracies between 1990 and 2015. How many pro- and contra-equality bills have been put to a vote, how many of those succeeded at the ballot, and are there differences between country groups? Our findings show that a majority of direct democratic bills was not related to equality at all. Regarding the successful bills, we detect some regional differences along with the general tendency that there are more pro- than contra-equality bills. Our paper sheds new light on the question if direct democracy can serve as an appropriate means to complement representative democracy and to shape democratic institutions in the future. The potential of direct democracy in fostering or impeding equality should be an important criterion for the assessment of claims to extend decision-making by citizens.
-
Measuring pH and buffer capacity in fluids aspirated from the fasted upper gastrointestinal tract of healthy adults
(2019)
-
Chara Litou
Dimitrios Psachoulias
Maria Vertzoni
Jennifer Dressman
Christos Reppas
- Purpose: The design of biorelevant conditions for in vitro evaluation of orally administered drug products is contingent on obtaining accurate values for physiologically relevant parameters such as pH, buffer capacity and bile salt concentrations in upper gastrointestinal fluids.
Methods: The impact of sample handling on the measurement of pH and buffer capacity of aspirates from the upper gastrointestinal tract was evaluated, with a focus on centrifugation and freeze-thaw cycling as factors that can influence results. Since bicarbonate is a key buffer system in the fasted state and is used to represent conditions in the upper intestine in vitro, variations on sample handling were also investigated for bicarbonate-based buffers prepared in the laboratory.
Results: Centrifugation and freezing significantly increase pH and decrease buffer capacity in samples obtained by aspiration from the upper gastrointestinal tract in the fasted state and in bicarbonate buffers prepared in vitro. Comparison of data suggested that the buffer system in the small intestine does not derive exclusively from bicarbonates.
Conclusions: Measurement of both pH and buffer capacity immediately after aspiration are strongly recommended as “best practice” and should be adopted as the standard procedure for measuring pH and buffer capacity in aspirates from the gastrointestinal tract. Only data obtained in this way provide a valid basis for setting the physiological parameters in physiologically based pharmacokinetic models.
-
Combining biorelevant "in vitro" and "in silico" tools to simulate and better understand the "in vivo" performance of a nano-sized formulation of aprepitant in the fasted and fed states
(2019)
-
Chara Litou
Nikunjkumar Patel
David B. Turner
Edmund Kostewicz
Martin Kuentz
Karl J. Box
Jennifer Dressman
- Introduction: When developing bio-enabling formulations, innovative tools are required to understand and predict in vivo performance and may facilitate approval by regulatory authorities. EMEND® is an example of such a formulation, in which the active pharmaceutical ingredient, aprepitant, is nano-sized. The aims of this study were 1) to characterize the 80 mg and 125 mg EMEND® capsules in vitro using biorelevant tools, 2) to develop and parameterize a physiologically based pharmacokinetic (PBPK) model to simulate and better understand the in vivo performance of EMEND® capsules and 3) to assess which parameters primarily influence the in vivo performance of this formulation across the therapeutic dose range.
Methods: Solubility, dissolution and transfer experiments were performed in various biorelevant media simulating the fasted and fed state environment in the gastrointestinal tract. An in silico PBPK model for healthy volunteers was developed in the Simcyp Simulator, informed by the in vitro results and data available from the literature.
Results: In vitro experiments indicated a large effect of native surfactants on the solubility of aprepitant. Coupling the in vitro results with the PBPK model led to an appropriate simulation of aprepitant plasma concentrations after administration of 80 mg and 125 mg EMEND® capsules in both the fasted and fed states. Parameter Sensitivity Analysis (PSA) was conducted to investigate the effect of several parameters on the in vivo performance of EMEND®. While nano-sizing aprepitant improves its in vivo performance, intestinal solubility remains a barrier to its bioavailability and thus aprepitant should be classified as DCS IIb.
Conclusions: The present study underlines the importance of combining in vitro and in silico biopharmaceutical tools to understand and predict the absorption of this poorly soluble compound from an enabling formulation. The approach can be applied to other poorly soluble compounds to support rational formulation design and to facilitate regulatory assessment of the bio-performance of enabling formulations.
-
Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations- A PEARRL Review
(2018)
-
Daniel J. Price
Felix Ditzinger
Niklas J. Koehl
Sandra Jankovic
Georgia Tsakiridou
Anita Nair
René Holm
Martin Kuentz
Jennifer Dressman
Christoph Saal
- Objectives Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection.
Key Findings. Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can instead be guided by molecular rationale. However, more work is required to see wide-spread application of such an approach for PI selection.
Conclusions PIs are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.
-
Calculation of drug-polymer mixing enthalpy as a new screening method of precipitation inhibitors for supersaturating pharmaceutical formulations
(2019)
-
Daniel J. Price
Anita Nair
Martin Kuentz
Jennifer Dressman
Christoph Saal
- Supersaturating formulations are widely used to improve the oral bioavailability of poorly soluble drugs. However, supersaturated solutions are thermodynamically unstable and such formulations often must include a precipitation inhibitor (PI) to sustain the increased concentrations to ensure that sufficient absorption will take place from the gastrointestinal tract. Recent advances in understanding the importance of drug-polymer interaction for successful precipitation inhibition have been encouraging. However, there still exists a gap in how this newfound understanding can be applied to improve the efficiency of PI screening and selection, which is still largely carried out with trial and error-based approaches. The aim of this study was to demonstrate how drug-polymer mixing enthalpy, calculated with the Conductor like Screening Model for Real Solvents (COSMO-RS), can be used as a parameter to select the most efficient precipitation inhibitors, and thus realise the most successful supersaturating formulations. This approach was tested for three different Biopharmaceutical Classification System (BCS) II compounds: dipyridamole, fenofibrate and glibenclamide, formulated with the supersaturating formulation, mesoporous silica. For all three compounds, precipitation was evident in mesoporous silica formulations without a precipitation inhibitor. Of the nine precipitation inhibitors studied, there was a strong positive correlation between the drug-polymer mixing enthalpy and the overall formulation performance, as measured by the area under the concentration-time curve in in vitro dissolution experiments. The data suggest that a rank-order based approach using calculated drug-polymer mixing enthalpy can be reliably used to select precipitation inhibitors for a more focused screening. Such an approach improves efficiency of precipitation inhibitor selection, whilst also improving the likelihood that the most optimal formulation will be realised.
-
Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review
(2019)
-
Ioannis Loisios-Konstantinidis
Rafael L.M. Paraiso
Nikoletta Fotaki
Mark McAllister
Rodrigo Cristofoletti
Jennifer Dressman
- Objectives: The objective of this review is to provide an overview of PK/PD models, focusing on drug-specific PK/PD models and highlighting their value-added in drug development and regulatory decision-making.
Key findings: Many PK/PD models, with varying degrees of complexity and physiological understanding, have been developed to evaluate the safety and efficacy of drug products. In special populations (e.g. pediatrics), in cases where there is genetic polymorphism and in other instances where therapeutic outcomes are not well described solely by PK metrics, the implementation of PK/PD models is crucial to assure the desired clinical outcome. Since dissociation between the pharmacokinetic and pharmacodynamic profiles is often observed, it is proposed that physiologically-based pharmacokinetic (PBPK) and PK/PD models be given more weight by regulatory authorities when assessing the therapeutic equivalence of drug products.
Summary: Modeling and simulation approaches already play an important role in drug development. While slowly moving away from “one-size fits all” PK methodologies to assess therapeutic outcomes, further work is required to increase confidence in PK/PD models in translatability and prediction of various clinical scenarios to encourage more widespread implementation in regulatory decision-making.
-
Effects of medicines used to treat gastrointestinal diseases on the pharmacokinetics of co-administered drugs : a PEARRL review [Pharmacokinetic interactions with GI drugs]
(2018)
-
Chara Litou
Angela Effinger
Edmund Kostewicz
Karl Box
Nikoletta Fotaki
Jennifer Dressman
- Background: Drugs used to treat gastrointestinal diseases (GI drugs) are widely used either as prescription or over23 the-counter (OTC) medications and belong to both the ten most prescribed and ten most sold OTC medications worldwide. Current clinical practice shows that in many cases, these drugs are administered concomitantly with other drug products. Due to their metabolic properties and mechanisms of action, the drugs used to treat gastrointestinal diseases can change the pharmacokinetics of some co27 administered drugs. In certain cases, these interactions can lead to failure of treatment or to the occurrence of serious adverse events. The mechanism of interaction depends highly on drug properties and differs among therapeutic categories. Understanding these interactions is essential to providing recommendations for optimal drug therapy.
Objective: To discuss the most frequent interactions between GI and other drugs, including identification of the mechanisms behind these interactions, where possible.
Conclusion: Interactions with GI drugs are numerous and can be highly significant clinically. Whilst alterations in bioavailability due to changes in solubility, dissolution rate and metabolic interactions can be (for the most part) easily identified, interactions that are mediated through other mechanisms, such as permeability or microbiota, are less well understood. Future work should focus on characterizing these aspects.