Refine
Is part of the Bibliography
1518 search hits
-
Understanding the biosynthesis of fabclavines in entomopathogenic bacteria
(2020)
-
Sebastian Wenski
- The compound class of the fabclavines was described as secondary or specialized metabolites (SM) for Xenorhabdus budapestensis and X. szentirmaii. Their corresponding structure was elucidated by NMR and further derivatives could be identified in both strains. Biochemically, fabclavines are hybrid SMs derived from two non-ribosomal-peptide-synthetases (NRPS), one type I polyketide-synthase (PKS) and polyunsaturated fatty acid (PUFA) synthases. In detail, a hexapeptide is connected via partially reduced polyketide units to an unsual polyamine. Structurally, they are related to the (pre-)zeamines, described for Serratia plymuthica and Dickeya zeae. Fabclavines exhibit a broad-spectrum bioactivity against a variety of different organisms like Grampositive and Gram-negative bacteria, fungi, protozoa but also against eukaryotic celllines.
In this work, the fabclavine biosynthesis was elucidated and assigned to two independently working assembly lines. The NRPS-PKS-pathway is initiated by the first NRPS FclI via generation of a tetrapeptide, which is elongated by the second NRPS FclJ, leading to a hexapeptide. Alternatively, FclJ can also act as direct start of the biosynthesis, resulting in the final formation of shortened fabclavine derivatives with a diinstead of a hexapeptide. In both cases, the peptide moiety is transferred to the iterative type I PKS FclK, leading to an elongation with partially reduced polyketide units. The resulting NRPS-PKS-intermediate is still enzyme-bound. The PUFA-homologues FclC, FclD and FclE in combination with FclF, FclG and FclH belong to the polyamine-forming pathway. Briefly, repeating decarboxylative Claisen thioester condensation reactions of acyl-coenzym A building blocks lead to the generation of an acyl chain in a PKS- or fatty acid biosynthesis-like manner. The corresponding β-keto-groups are either completely reduced or transaminated in a specific and repetitive way, resulting in the concatenation of so-called amine-units. The final β-keto-group is reduced to a hydroxy-group and the intermediate is reductively released by the thioester reductase FclG. A subsequent transamination step leads to the final polyamine. The NRPS-PKS- as well as the polyamine-pathway are connected by FclL. This condensation domain-like protein catalyzes the condensation of the polyamine with the NRPS-PKS-part, which results in the release of the final fabclavine. The results are described in detail in the first publication (first author).
Fabclavine biosynthesis gene cluster (BGC) are widely spread among the genus Xenorhabdus and Photorhabdus. In Xenorhabdus strains a high degree of conservation regarding the BGC synteny as well as the identity of single proteins can be observed. However, Photorhabdus strains harbor only the PUFA-homologues. While in Photorhabdus no product could be detected, our analysis revealed that the Xenorhabdus strains produce a large chemical diversity of different derivatives. Briefly, the general backbone of the fabclavines is conserved and only four chemical moieties are variable: The second and last amino acids of the NRPS-part, the number of incorporated polyketide units as well as the number of amine units in the polyamine. In combination with the elucidated biosynthesis, these variables could be assigned to single biosynthesis components as diversity mechanisms. Together with the 10 already described derivatives, a total of 32 derivatives could be detected. Interestingly, except for taxonomic closely related strains, all analyzed strains produce their own set of derivatives. Finally, we could confirm that the fabclavines are the major bioactive compound class in the analyzed strains under laboratory conditions. The results are described in detail in the second publication (first author).
Together with our collaboration partner Prof. Selcuk Hazir a potent bioactivity against Enterococcus faecalis, which is associated with endodontic infections, could be contributed to X. cabanillasii. Here, we could confirm that this bioactivity can be assigned to the fabclavines. The results are described in detail in the third publication(co-author).
Among the genus Xenorhabdus, X. bovienii represents an exception as its NRPS and PKS genes of the fabclavine BGC are missing or truncated, resulting in the exclusive production of polyamines. Furthermore, its PUFA-homologue FclC harbors an additional dehydratase (DH) domain. Upon extensive analysis a yet unknown deoxy-polyamine was identified and assigned to this additional domain. Finally, the DH domain was transferred into other polyamine pathways. Regardless of an in cis or in trans integration, the chimeric pathways produced deoxy-derivatives of its naturally occurring polyamines, suggesting that this represents another diversification mechanism. The results are described in detail in the attached manuscript (first author).
-
Monoterpenoid production and monoterpenoid resistance mechanisms in Pseudomonas putida
(2020)
-
Florence Miramella Schempp
- Monoterpenes and their monoterpenoid derivatives form a subclass of terpene(oid)s. They are widely used in medicines/pharmaceuticals, as flavor and fragrance compounds, or in agriculture and are also considered as future biofuels. However, for many of these substances, the extraction from natural sources poses challenges such as occurring at low concentrations in their raw material or because the natural sources are diminishing. Furthermore, many of the structurally more complex terpenoids cannot be chemically synthesized in an economic way. Therefore, microbial production provides an attractive alternative, taking advantage of the often distinct regio- and stereoselectivity of enzymatic reactions. However, monoterpenes and monoterpenoids are challenging products for industrial biotechnology processes due to their pronounced cytotoxicity, which complicates the production in microorganisms compared to longer-chain terpenes (sesquiterpenes, diterpenes, etc.).
The aim of this thesis was to generate a biotechnological complement to fossil-resources-based chemical processes for industrial monoterpenoid production. Therefore, a starting point for the further development of a microbial cell factory based on the microbe Pseudomonas putida KT2440 was aimed to be created. This production organism should be able to conduct a whole- cell biocatalysis to selectively oxyfunctionalize monoterpene hydrocarbons using renewable industrial by-products and waste streams as raw material for monoterpenoid production (Figure 1). As a model substance, the production of (-)-menthol should be addressed due to its industrial significance. (-)-Menthol is one of the world’s most widely-used flavor and fragrance compounds by volume as well as a medical component, having an annual production volume of over 30,000 tons. An approach for (-)-menthol production from renewable resources could be a biotechnological(-chemical) two-step conversion (Figure 1), starting from (+)-limonene, a by-product of the citrus fruit processing industry.
The thesis project was divided into three parts. In the first part, enzymes (limonene-3- hydroxylases) were to be identified that can convert (+)-limonene into the precursor of (-)-menthol, (+)-trans-isopiperitenol. To counteract product toxicity, in the second part, the tolerance of the intended production organism P. putida KT2440 towards monoterpenes and their monoterpenoid derivatives should be increased. Finally, in the third part, the identified hydroxylase enzymes would be expressed in the improved P. putida KT2440 strain to create a whole-cell biocatalyst for the first reaction step of a two-step (-)-menthol production, starting from (+)-limonene.
To achieve these objectives, different genetic/molecular biology and analytical methods were applied. In this way, two cytochrome P450 monooxygenase enzymes from the fungi Aureobasidium pullulans and Hormonema carpetanum could be identified and functionally expressed in Pichia pastoris, which can catalyze the intended hydroxylation reaction on (+) limonene with high stereo- and regioselectivity. A further characterization of the enzyme from A. pullulans showed that apart from (+) limonene the protein can also hydroxylate ( ) limonene, - and -pinene, as well as 3-carene.
Furthermore, within this thesis, mechanisms of microbial monoterpenoid resistance of P. putida could be identified. It was shown that the different monoterpenes and monoterpenoids tested have very different toxicity levels and that mainly the Ttg efflux pumps of P. putida GS1 are responsible for the tolerance to many of these compounds. Based on these results, a P. putida KT2440 strain with increased resistance to various monoterpenoids, including isopiperitenol, could then be generated, which can be used as a host organism for the further development of monoterpenoid-producing cell factories.
While within the scope of this work the heterologous expression of the fungal gene in prokaryotic cells in a functional form could not be realized despite different approaches, the identified enzymes, the monoterpenoid-tolerant P. putida strain and a plasmid developed for heterologous gene expression in P. putida provide a starting point for the further design of a microbial cell factory for biotechnological monoterpenoid production.
-
Strategies and effectiveness of zoo education in the field of conservation biology
(2020)
-
Natalia Álvarez Montes
- Evidence is increasingly pointing towards a significant global decline in biodiversity. The drivers of this decline are numerous, including habitat change and overexploitation, rapid deforestation, pollution, exotic species and disease, and finally climate change as an emerging driver of biodiversity change (Nakamura, et al., 2013; Hancocks, 2001; Pereira, Navarro & Martins, 2012). Raising public awareness of the need to conserve biological diversity is essential to safeguard the richness of life forms all over the world (Lindemann-Matthies, 2002). In this regard, institutions such as science museums, zoos and aquariums have the potential to play an important role (Rennie & Stocklmayer, 2003). Especially, zoos can provide a productive learning environment (Miles & Tout, 1992), facilitating the promotion of public conservation awareness and the adoption of pro-environmental behaviours that would reduce negative human impacts on biodiversity (Barongi, et al., 2015).
Based on these concepts, my study contributes to the developing field of visitor studies. Taking as reference non-zoo visitors and zoo visitors, I have focused on reviewing some aspects of conservation education, such as people's awareness of conservation, people's interest in animals and people's feelings towards animals and attitudes towards zoos. The study identified differences between non-regular and regular zoo visitors in interests in animals, as well as visitor attitudes towards conservation issues and zoos. Therefore, the present study indicated that positive emotional reactions and, in particular, a perceived sense of connection to the animal were linked and depended on the frequency of zoo visits. It was as well remarkable, that conservation awareness was influenced by the interest in animals, the interest in visiting zoos, the attitudes towards these institutions, and the age and the country of origin. All these variables had a greater effect in the conservation consciousness of the participants. Additionally interestingly, the main reason for visiting zoos in every country was to learn something about animals. This highlights the educational role of zoos and broadly supports the idea that people want to visit zoos to learn something about animals, in turn facilitating pro-conservation learning and changes in attitude. They are uniquely positioned to interact with visitors, communities, and society and to contribute by providing an informative and entertaining environment. Visiting zoos could led to contribute to promoting animal connectedness and interest in species.
-
The carotenoid pathway in diatoms
(2020)
-
Alba Blázquez Pla
-
Günstige Bedingungen für Plagegeister : der Parasitologe Sven Klimpel über die zu erwartende Mückenpopulation und Gefahr von Infektionen
(2017)
-
Sven Klimpel
Dirk Frank
-
Revisiting global trends in freshwater insect biodiversity
(2020)
-
Sonja C. Jähnig
Viktor Baranov
Florian Altermatt
Peter Cranston
Martin Friedrichs‐Manthey
Juergen Geist
Fengzhi He
Jani Heino
Daniel Hering
Franz Hölker
Jonas Jourdan
Gregor Kalinkat
Jens Kiesel
Florian Leese
Alain Maasri
Michael T. Monaghan
Ralf B. Schäfer
Klement Tockner
Jonathan D. Tonkin
Sami Domisch
- A recent global meta‐analysis reported a decrease in terrestrial but increase in freshwater insect abundance and biomass (van Klink et al., Science 368, p. 417). The authors suggested that water quality has been improving, thereby challenging recent reports documenting drastic global declines in freshwater biodiversity. We raise two major concerns with the meta‐analysis and suggest that these account for the discrepancy with the declines reported elsewhere. First, total abundance and biomass alone are poor indicators of the status of freshwater insect assemblages, and the observed differences may well have been driven by the replacement of sensitive species with tolerant ones. Second, many of the datasets poorly represent global trends and reflect responses to local conditions or nonrandom site selection. We conclude that the results of the meta‐analysis should not be considered indicative of an overall improvement in the condition of freshwater ecosystems.
-
Primary determinants of communities in deadwood vary among taxa but are regionally consistent
(2020)
-
Jörg Müller
Mike Ulyshen
Sebastian Seibold
Marc Cadotte
Anne Chao
Claus Bässler
Sebastian Vogel
Jonas Hagge
Ingmar Weiß
Petr Baldrian
Vojtěch Tláskal
Simon Thorn
- The evolutionary split between gymnosperms and angiosperms has far‐reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2‐tree species and 6‐tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp‐detected fungal assemblages, decay stage and host tree for DNA‐detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi‐taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood.
-
Katrin Böhning-Gaese, Biologin : Goethe, Deine Forscher
(2018)
-
Stefanie Hense
-
Adh4, an alcohol dehydrogenase controls alcohol formation within bacterial microcompartments in the acetogenic bacterium Acetobacterium woodii
(2020)
-
Nilanjan Pal Chowdhury
Jimyung Moon
Volker Müller
- Acetobacterium woodii utilizes the Wood‐Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non‐acetogenic growth on 1,2‐propanediol (1,2‐PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2‐PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC‐encapsulated propanol‐generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH‐dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2‐PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.
-
Resolving recalcitrant clades in the pantropical ochnaceae: insights from comparative phylogenomics of plastome and nuclear genomic data derived from targeted sequencing
(2021)
-
Julio Valentin Schneider
Juraj Paule
Tanja Jungcurt
Domingos Cardoso
André Márcio Amorim
Thomas Berberich
Georg Zizka
- Plastid DNA sequence data have been traditionally widely used in plant phylogenetics because of the high copy number of plastids, their uniparental inheritance, and the blend of coding and non-coding regions with divergent substitution rates that allow the reconstruction of phylogenetic relationships at different taxonomic ranks. In the present study, we evaluate the utility of the plastome for the reconstruction of phylogenetic relationships in the pantropical plant family Ochnaceae (Malpighiales). We used the off-target sequence read fraction of a targeted sequencing study (targeting nuclear loci only) to recover more than 100 kb of the plastid genome from the majority of the more than 200 species of Ochnaceae and all but two genera using de novo and reference-based assembly strategies. Most of the recalcitrant nodes in the family’s backbone were resolved by our plastome-based phylogenetic inference, corroborating the most recent classification system of Ochnaceae and findings from a phylogenomic study based on nuclear loci. Nonetheless, the phylogenetic relationships within the major clades of tribe Ochnineae, which comprise about two thirds of the family’s species diversity, received mostly low support. Generally, the phylogenetic resolution was lowest at the infrageneric level. Overall there was little phylogenetic conflict compared to a recent analysis of nuclear loci. Effects of taxon sampling were invoked as the most likely reason for some of the few well-supported discords. Our study demonstrates the utility of the off-target fraction of a target enrichment study for assembling near-complete plastid genomes for a large proportion of samples.